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1 Introduction

1.1 Topological strings and their applications

Topological string theory is a topological sector of type II string theory described by a special
class of CFTs (which are two-dimensional sigma models) coupled to gravity. The target of the
sigma model is usually a Calabi–Yau manifold, which in the context of type II string theory is
simply the compactification manifold. It is often possible to compute the amplitudes of these
theories in an exact form, for both the open and the closed string sector, and they probably
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provide most of the exactly computable quantities in string theory. The amplitudes that we
typically compute in topological string theory are functions of the moduli, and we denote them
in the closed and open sectors as

Fg(t), Fg,h(t, z), (1.1)

respectively. Here g, h are the genus and the number of holes of the Riemann surface, and t, z
are the closed and open moduli. We will now give a list of the problems in string theory and
mathematical physics where these amplitudes are relevant.

1. The Fg(t) and the Fg,h(t, z) contain information about the enumerative geometry of the
Calabi–Yau target. They can be interpreted in terms of Gromov–Witten theory, one of the
cornerstones of modern algebraic geometry.

2. The Fg(t) are couplings in the N = 2 4d supergravity theory which appears when one
compactifies type II string theory in a Calabi–Yau manifold. Appropriate choices of the
target make possible to derive field theory results from the amplitudes Fg(t). For example,
the counting of instantons in N = 2 gauge theory can be done by using topological string
theory. This is called the geometric engineering of N = 2 theories.

3. The open and closed amplitudes count BPS states of the type II compactification. One can
use them to count microstates of a certain class of black holes in type II/M theory.

4. On certain Calabi–Yau manifolds, the open and closed amplitudes are related by large N
dualities to the ’t Hooft resummation of amplitudes in Chern–Simons theory and matrix
models, very much in the spirit of the AdS/CFT correspondence. This makes possible to
test large N dualities to all orders in 1/N .

1.2 The structure of topological string theory

String theories involve typically a conformal field theory (CFT) on a general Riemann surface
Σg which is then coupled to 2d gravity. If we write the CFT action as

S[φ, gµν ], (1.2)

where gµν is the two–dimensional metric and φ are the “matter” fields, then the basic object we
want to compute is the total free energy

F =
∞∑
g=0

g2g−2
s Fg, Fg =

∫
DhDφ e−S[φ,h] (1.3)

where gs is the string coupling constant, and the path integral in Fg is over field configurations
on the Riemann surface Σg. We can also perturb the CFT with various operators {Oa} leading
to a general action which we write

S[φ, h, t] = S[φ, h] +
∑
a

taOa. (1.4)

In this case, the free energies at genus g will depend as well on the couplings ta, and we write
Fg(t) to indicate this explicit dependence.

The computation of the free energies in (1.3) is a phenomenal problem, and many approaches
have been developed in order to solve it. In the continuum approach, one fixes diffeomorphism
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invariance and finds that there is a critical central charge c = 26 in the CFT for which the 2d
metric decouples and one is left with an integration over a finite set of coordinates τ parametrizing
the moduli space Mg

Fg(t) ∼
∫
Mg

dτ

∫
Dφ e−S[φ,τ,t] (1.5)

This is the so-called critical string theory. For c 6= 26 (noncritical string theories), the metric has,
on top of the finite set of moduli τ , a dynamical degree of freedom–the Liouville field. Critical
strings are manageable but still very hard to solve, since integrating over the moduli space
remains a difficult problem. Noncritical strings for generic values of c are so far intractable.

There are however two classes of examples where we have tools to compute Fg(t). The first
class are noncritical strings for c < 1. Here one can not only solve for the Liouville dynamics,
but also perform the resulting integrals over the moduli and obtain explicit results for Fg(t) at
all genera. This is achieved by using matrix models to discretize the worldsheet of the string.
The second class of examples are topological string theories, which are the topic of this course.

2 Calabi–Yau manifolds

Good introductions to complex and Calabi–Yau manifolds can be found in [1] and in the second
volume of [2]. We will also use some standard results in algebraic geometry. The reference for
these is [3].

2.1 Definition and properties

The first thing to know about Calabi–Yau manifolds is that they are complex, i.e. they have
complex coordinates (in local patches) that we will denote by

xI , xI , I = 1, · · · , d, (2.1)

where d is the complex dimension. These manifolds are endowed with a Riemannian metric that
is Hermitian, i.e. it only mixes holomorphic with antiholomorphic coordinates, and in a local
patch it looks like

GIJ . (2.2)

The Hermitian character implies that, if vI is a vector of complex components, then

GIJv
I(vJ)∗ ≥ 0 (2.3)

and it vanishes only when vI = 0.
To build a Calabi–Yau manifold we need another condition, i.e. that the manifold is Kähler.

This means that the Kähler form

ω = iGIJdxI ∧ dxJ (2.4)

is closed:
dω = 0 (2.5)

Notice that, since
G∗
IJ

= GJI (2.6)

the Kähler form is a real two-form. In components (2.5) leads to

∂KGIJ = ∂IGKJ , ∂KGIJ = ∂JGIK . (2.7)
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Locally, one can then write the Hermitian metric as

GIJ =
∂2K

∂xI∂xJ
, (2.8)

where K(xI , xI) is called the Kähler potential. It is easy to check that for a Kähler manifold the
Christoffel symbols do not have mixed indices, i.e. their only nonvanishing components are

ΓIJK , ΓI
JK
. (2.9)

The Calabi–Yau condition requires on top of all this that the metric GIJ is Ricci–flat:

RIJ = 0. (2.10)

CYs first appeared in string theory as compactification manifolds, since the CY condition appears
a a requirement to have a supersymmetric Minkowski vacuum. From the point of view of the
sigma models, (2.10) guarantees conformal invariance of the underlying sigma model. It was
conjectured by Calabi and then proved by Yau that Ricci flatness is equivalent to a topological
condition, namely that the first Chern class of the manifold vanishes

c1(X) = 0. (2.11)

One of the most important properties of Calabi-Yau manifolds (which can actually be taken as
their defining feature) is that they have a holomorphic, nonvanishing section Ω of the canonical
bundle KX = Ωd,0(X). In local coordinates, this is written as

Ω = ΩI1···IddxI1 ∧ · · · ∧ dxId . (2.12)

Since the section is nowhere vanishing, the canonical line bundle is trivial and c1(KX) = 0.
Using Hodge theory, Poincaré duality and the CY condition, one can see that the Hodge

diamond of a CY threefold
h0,0

h0,1 h1,0

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(2.13)

has the structure
1

0 0
0 h1,1 0

1 h2,1 h2,1 1
0 h1,1 0

0 0
1

(2.14)

and therefore it only depends on two integers h1,1(X), h2,1(X). It also follows that the Euler
characteristic of a CY is

χ(X) = 2(h1,1(X)− h2,1(X)). (2.15)
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2.2 Examples

Example 2.1. Tori. The simplest examples of CY manifolds are tori, X = T2d. In one complex
dimension, these are elliptic curves,

y2 = 4x3 − g2x− g3. (2.16)

Notice that as we change g2, g3, we change the shape of the elliptic curve. These are in fact
simple instances of complex deformation parameters.

Example 2.2. Non-compact CYs. Let us first consider non-compact Calabi–Yau manifolds
whose building block is a one-dimensional compact manifold. These manifolds will be given by
a Riemann surface together with an appropriate bundle over it, and geometrically they can be
regarded as the local geometry of an embedded Riemann surface in a general Calabi–Yau space.
Indeed, consider a Riemann surface Σg holomorphically embedded inside a Calabi–Yau threefold
X, and let us look at the holomorphic tangent bundle of X restricted to Σg. We have

TX|Σg = TΣg ⊕NΣg , (2.17)

where NΣg is a holomorphic rank-two complex vector bundle over Σg, called the normal bundle
of Σg, and the Calabi–Yau condition c1(X) = 0 gives

c1(NΣg) = 2g − 2. (2.18)

The Calabi–Yau X ‘near Σg’ then looks like the total space of the bundle

N → Σg, (2.19)

where N is regarded here as a rank-two bundle over Σg satisfying (2.18). The non-compact space
(2.19) is an example of a local Calabi–Yau threefold.

When g = 0 and Σg = P1 it is possible to be more precise about the bundle N . A theorem
due to Grothendieck says that any holomorphic bundle over P1 splits into a direct sum of line
bundles (for a proof, see for example [3], pp. 516–7). Line bundles over P1 are all of the form
O(n), where n ∈ Z. In Maxwell theory, the bundle O(n) is associated to a monopole of charge n.
It can be easily described in terms of two charts on P1: the north-pole chart, with co-ordinates
z,Φ for the base and the fibre, respectively, and the south-pole chart, with co-ordinates z′,Φ′.
The change of co-ordinates is given by

z′ = 1/z, Φ′ = z−nΦ. (2.20)

We also have that c1(O(n)) = n. We then find that local Calabi–Yau manifolds that are made
out of a two-sphere together with a bundle over it are all of the form

O(−a)⊕O(a− 2)→ P1, (2.21)

since the degrees of the bundles have to sum up to −2 due to (2.18). An important case occurs
when a = 1. The resulting non-compact manifold,

O(−1)⊕O(−1)→ P1, (2.22)

is called the resolved conifold.
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We can also consider non-compact Calabi–Yau threefolds based on compact complex surfaces.
Consider a complex surface S embedded in a Calabi–Yau manifold X. As before, we can split
the tangent bundle as

TX|S = TS ⊕NS , (2.23)

where the normal bundle NS is now of rank one. The Calabi–Yau condition leads to

c1(NS) = c1(KS), (2.24)

where KS is the canonical line bundle over S, and we used that c1(TS) = −c1(KS). Therefore,
we have NS = KS . The Calabi–Yau X ‘near S’ looks like the total space of the bundle

KS → S. (2.25)

This construction gives a whole family of non-compact Calabi–Yau manifolds that are also re-
ferred to as local Calabi–Yau manifolds. A well-known example is S = P2, the two-dimensional
projective space, which leads to the Calabi–Yau manifold

O(−3)→ P2, (2.26)

also known as local P2. Another important example is S = P1×P1, which leads to local P1×P1.

Example 2.3. K3 surface. The K3 surface is the unique, simply-connected complex surface
which has c1(X) = 0 and is therefore CY. Let us find a concrete realization. Since we want a
surface, we can look for a projective hypersurface X in P3 of the form

xd0 + xd1 + xd2 + xd3 = 0. (2.27)

Let us show that, for an appropriate choice of d, this is indeed a K3 surface. By the Lefshetz
hyperplane theorem, this hypersurface is simply-connected. The only thing to impose is then
that c1(X) = 0. We first notice that the tangent bundle of P3 along X satisfies

TP3
∣∣
X

= TX ⊕NX (2.28)

where TX and NX are respectively the tangent and normal bundle to X. The total Chern class
satisfies, by Whitney’s formula,

c(P3) = c(TX) · c(NX). (2.29)

We now use some elementary facts from algebraic geometry. The total Chern class of Pk is given
by

c(Pk) = (1 + x)k+1, (2.30)

where x = [H] is the generator of H2(Pk,Z) and coincides with the hyperplane class (i.e. the
Poincaré dual to a hyperplane H ' Pk−1 in Pk). On the other hand, a basic consequence of the
adjunction formula says that the normal bundle NX to a hypersurface of degree d in PK (which
is a line bundle) has first Chern class given by

c1(NX) = [X] (2.31)

where [X] is the Poincaré dual to X, understood as a cycle of complex codimension one in Pk.
One also has that

[X] = dx (2.32)
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Using these facts, we obtain for the hypersurface (2.27),

c(TX) =
(1 + x)4

1 + dx
= 1 + (4− d)x+ · · · . (2.33)

Therefore, c1(X) = 0 if and only if d = 4 in (2.27).

Example 2.4. The quintic CY. This can be understood as the three-dimensional analogue of
the hypersurface (2.27). It is defined by an algebraic equation in P4

xd0 + xd1 + xd2 + xd3 + xd4 = 0. (2.34)

An argument similar to the one for the K3 surface shows that the CY condition implies now

d = 5 (2.35)

hence the name quintic. The Lefshetz hyperplane theorem says that

h1,1(X) = h1,1(P4) = 1, (2.36)

and its generator is ω = i∗(x), where x is the hyperplane class of P4 and i : X ↪→ P4 is the
inclusion map. The triple intersection number

κ =

∫
X
ω3 =

∫
P4

ω3 ∧ [X] = 5

∫
P4

x4 = 5. (2.37)

We can also compute the Euler characteristic

χ(X) =

∫
X
c3(X) =

∫
P4

c3(X) ∧ [X] = −
∫
P4

40x3 · 5x = −200, (2.38)

and from here we deduce h2,1(X) = 101.

Example 2.5. The Enriques CY. A very simple example of a CY is, with our definition,

K3× T2. (2.39)

This is a very special case, however. It is easy to see that a generic CY has SU(3) holonomy,
while (2.39) has SU(2) holonomy. Correspondingly, when we compactify type II string theory on
(2.39) we have N = 4 supersymmetry, and not N = 2. However, one can find a less nontrivial
example closely related to this, which is called the Enriques Calabi–Yau. The Enriques Calabi-
Yau X can be viewed as the first non-trivial generalization of the product space T2 × K3. It is
defined as the orbifold (T2 ×K3)/Z2, where Z2 acts as a free involution. This involution inverts
the coordinates of the torus and acts as the Enriques involution on the K3 surface. It can be
shown that

h2,1(X) = h1,1(X) = 11, (2.40)

therefore
χ(X) = 0. (2.41)

From the 11 (1, 1) classes, one –that we will denote by ωS– comes from T2, while the remaining
10 come from the quotient K3/Z2, which is called the Enriques surface E, and we denote them
by ωa, a = 1, · · · , 10. If we define the intersection matrix of the two classes in the Enriques
surface

Cab =

∫
E
ωa ∧ ωb, (2.42)

then the only nontrivial triple intersection number of (1, 1) classes in the Enriques CY is

κabS =

∫
X
ωa ∧ ωb ∧ ωS = Cab. (2.43)
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3 Topological sigma models

Topological strings are, as all string theories, CFTs coupled to 2d gravity. The underlyng CFTs
are 2d nonlinear sigma models with a target space X, and they were introduced in [4–6]. We will
take X to be a CY manifold. This will guarantee among other things the conformal invariance
of the model.

There are two different sigma models that can be used to construct topological strings, and
they are referred to as type A and type B topological sigma models. Let us first explain what is
common to both of them.

3.1 General properties of topological sigma models

First of all, both models are based on a scalar, commuting field which is a map x : Σg → X. On
top of that they both have Grassmann-valued fields and possess a Grassmann, scalar symmetry
Q which acts as a derivation and has the following properties:

1. It is nilpotent Q2 = 0.

2. The sigma model action is Q-exact:

S = {Q, V } (3.1)

The quantity V is sometimes called the gauge fermion.

3. The energy-momentum tensor of this theory is also Q-exact,

Tµν = {Q, Gµν}, (3.2)

where Gµν = δV/δgµν .

The last property is what makes these theories topological. Indeed, one can show that
the partition function of a theory with this property does not depend on the background two-
dimensional metric. This is easily proved, at least at a formal level. The partition function is
given by

Z =

∫
Dφ e−S , (3.3)

where φ denotes the set of fields of the theory, and we compute it in the background of a two-
dimensional metric hαβ on the Riemann surface. Since Tαβ = δS/δgαβ, we find that

δZ

δgµν
= −〈{Q, Gµν}〉, (3.4)

where the bracket denotes an unnormalized vacuum expectation value. Since Q is a symmetry
of the theory, the above vacuum expectation value vanishes, and we find that Z is metric-
independent. Notice that Q is formally identical to a BRST operator, and this suggests that the
right operators to look at in the model are the Q cohomology classes, i.e. operators O which
satisfy

{Q,O} = 0, O 6= {Q,Ψ}. (3.5)
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It is easy to see that the correlation functions of these operators are also metric independent.
This is because

δ

δgµν
〈Oi1Oi2 · · · Oin〉 = 〈Oi1Oi2 · · · OinTµν〉

= 〈Oi1Oi2 · · · Oin{Q, Gµν}〉 = ±〈{Q,Oi1Oi2 · · · OinGµν}〉 = 0.

(3.6)

In (3.4) and (3.6) we have ‘integrated by parts’ in field space, therefore we have assumed that
there are no contributions coming from boundary terms. In some situations this assumptions
does not hold, and we have contributions coming from the boundary of field space that lead to
anomalies in the Q symmetry, This is indeed the origin of the holomorphic anomaly equations
in topological string theory, which we will address later.

The metric-independence of the correlation functions in a topological field theory is very
surprising, since correlators of a generic QFT on a curved background will depend on the metric
–after all, this is what QFT in curved space is about!

The second surprising implication of Q-exactness of the action is that the semiclassical
approximation is exact. To see this we explicitly introduce a coupling constant ~,

Z =

∫
Dφ e−

1
~S , (3.7)

and
δZ

δ~−1
= −〈{Q, V }〉 = 0, (3.8)

In particular, we can evaluate the partition function (and the correlation functions of Q invariant
operators) at ~→ 0, which is the semiclassical limit.

The structure of topological quantum field theories, as we have reviewed them here, leads
immediately to a procedure for constructing non-local observables starting from local ones. Let
us suppose that we have found an operator φ(0) which is in the cohomology of Q, as well as
operators φ(n), n = 1, 2, that are differential forms of degree n on Σ such that,

dφ(n) = Qφ(n+1), n ≥ 0. (3.9)

In this equation, d denotes the exterior derivative on Σ. The operators φ(n) are called the
topological descendants of φ(0). It is easy to see that the operator

W
(γn)

φ(0)
=

∫
γn

φ(n), (3.10)

where γn ∈ Hn(Σ), is a topological observable:

QW (γn)

φ(0)
=

∫
γn

Qφ(n) =

∫
γn

dφ(n−1) =

∫
∂γn

φ(n−1) = 0, (3.11)

since ∂γn = 0. Similarly, it is easy to show if γn is trivial in homology (i.e. if it is ∂-exact),

then W
(γn)

φ(0)
= 0 is Q-exact. Equations (3.9) are called descent equations. The conclusion of

this analysis is that, given a (scalar) topological observable φ(0) and a solution to the descent
equations (3.9), one can construct a family of topological observables:

W
(γin )

φ(0)
, in = 1, · · · , bn, n = 1, 2, (3.12)

– 9 –



in one-to-one correspondence with the homology classes of the Riemann surface Σ.
It is easy to see that in any theory where (3.2) is satisfied there is a simple procedure to

construct a solution to (3.9) given a scalar observable φ(0). If (3.2) holds, then one has:

Pµ = T0µ = {Q, Gµ}, (3.13)

where
Gµ ≡ G0µ. (3.14)

Since Q is a Grassmannian symmetry, Gµ is an anti-commuting operator and a one-form on Σ.
If we are given a Q-invariant operator φ(0)(x), we can use (3.14) to construct

φ
(n)
µ1µ2···µn(x) = Gµ1Gµ2 · · ·Gµnφ(0)(x), (3.15)

where n ≤ 1, 2. On the other hand, since the Gµi anti-commute,

φ(n) =
1

n!
φ

(n)
µ1µ2···µndxµ1 ∧ · · · ∧ dxµn , (3.16)

is an n-form on Σ. By using (3.13), the Q-invariance of φ(0), as well as Pµ = ∂µ, one can easily
check that these forms satisfy the descent equations (3.9). This solution to (3.9) is usually called
the canonical solution to the descent equations.

A simple consequence of the descent procedure is that the perturbed action with the operators
(3.10) for n = 2

S(ta) = S +
∑
a

taW
(Σ)

φ
(0)
a

(3.17)

is also Q-closed. Therefore, given an observable φ(0), we can associate to it a deformation of the
theory which preserves Q-invariance and also Q-exactness of the energy-momentum tensor (this
is due to the fact that the perturbation involves integrating a two-form, so it is independent of
the metric on Σ). These are the topological analogues of marginal deformations in conventional
quantum field theory.

3.2 The type A model

We will denote real indices in the tangent space of the target manifold X by i, with i = 1, · · · , 2d.
We will also use complex coordinates on the worldsheet z = x1 + ix2, z̄ = x1 − ix2. Locally, we
can always find a flat Euclidean metric whose components are given in these complex coordinates
by

gzz̄ = gz̄z =
1

2
, gzz = gz̄z̄ = 0. (3.18)

The components of the epsilon tensor εµν in complex coordinates are

εz̄z = −εzz̄ = 2i. (3.19)

Finally, our choice of measure is d2z = −idz ∧ dz̄.
The field content of the type-A topological sigma model is the following. First, we have a map

x : Σg → X from a Riemann surface of genus g to a Kähler manifold X of complex dimension
d. We also have Grassmann fields χ ∈ x∗(TX), which are scalars on Σg, and a Grassmannian
one-form ρµ with values in x∗(TX). This last field satisfies a self-duality condition which implies
that its only non-zero components are

ρIz̄ ∈ x∗(T (1,0)X), ρIz ∈ x∗(T (0,1)X). (3.20)
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We also have an auxiliary field F iµ which is also self-dual. The Q symmetry acts on the fields as
follows:

[Q, xi] = χi,

{Q, χi} = 0,

{Q, ρIz̄} = 2∂z̄x
I + F Iz̄ − ΓIJKχ

JρKz̄ ,

{Q, ρIz} = 2∂zx
I + F Iz − ΓĪ

JK̄
χJ̄ρK̄z ,

[Q, F Iz̄ ] = −2Dz̄χ
I − ΓIJKχ

JFKz̄ −RIKJ̄LχKχJ̄ρLz̄ ,

[Q, F Iz ] = −2Dzχ
I − ΓI

JK
χJFKz +RĪ J̄LK̄χ

LχJ̄ρK̄z .

(3.21)

Notice that, by construction, one has Q2 = 0. Geometrically, if we interpret χi as the basis dxi

of differential forms on X, we see that Q acts on xi, χi like the de Rham differential operator on
the target space X.

The action for the theory is,

S =
1

2

∫
Σg

d2z
[
GIJ

(
4∂z̄x

I∂zx
J − 2ρIz̄Dzχ

J − 2ρJzDz̄χ
I − F Iz̄ F Jz

)
+RIJKLρ

I
z̄ρ
J
zχ

KχL
]
.

(3.22)

One can easily check that

SA = {Q, V }, (3.23)

where

V =
1

4

∫
Σg

d2z
√
ggµνGIJ

[
ρIµ∂νx

J + ρJµ∂νx
I − 1

2
ρIµF

J
ν −

1

2
ρJµF

I
ν

]
. (3.24)

In other words, the action is Q-exact. Since the action of Q does not depend on the two-
dimensional metric on Σg, it immediately follows that the energy-momentum tensor is also Q-
exact. Therefore, the A model is a topological field theory of the cohomological type. In this
theory we also have a U(1) ghost number symmetry. The ghost numbers of the fields x, χ and
ρ, F are 0, 1, −1 and 0, respectively. Notice that the Grassmannian charge Q then has ghost
number 1. The ‘antighost’ Gµν appearing in (3.2) has ghost number −1.

The bosonic term in (3.22) can be written as

1

2

∫
Σg

d2z
√
gGIJ

(
gµν − iεµν

)
∂µx

I∂νx
J =

1

2

∫
Σg

d2z
√
g GIJg

µν∂µx
I∂νx

J +

∫
Σg

x∗(ω), (3.25)

where ω is given in (2.4). This is because, in our conventions,

x∗(A) = iAIJ

(
∂zx

I∂z̄x
J − ∂z̄xI∂zxJ

)
d2z = −1

2
AIJε

µν∂µx
I∂νx

J√gd2z (3.26)

for any (1, 1) form AIJ .

On the other hand, the bosonic part of the standard nonlinear sigma model is given by

Sσ =
1

2

∫
Σg

d2z
√
g
(
GIJg

µν + iBIJε
µν
)
∂µx

I∂νx
J , (3.27)
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where BIJ are the components of a form

B = BIJdxI ∧ dxJ ∈ H1,1(X), (3.28)

called the B field. This is a real two-form, and its components satisfy

B∗
IJ

= −BJI . (3.29)

In view of the above, we can write

Sσ =

∫
Σg

d2z GIJ∂zx
I∂z̄x

J +

∫
Σg

d2z GIJ∂z̄x
I∂zx

J

=

∫
Σg

d2z GIJ2∂z̄x
I∂zx

J −
∫

Σg

x∗(J )

(3.30)

where
GIJ = GIJ +BIJ , GIJ = GIJ −BIJ (3.31)

and
J = ω + iB (3.32)

is called the complexified Kähler form.

Remark 3.1. Although we are focusing on CY manifolds, the A model can be formulated on
any Kähler (in fact, almost-Hermitian) manifold, see [4].

Since the A model is a cohomological field theory, the relevant operators, as we discussed in
the previous section, are the observables, i.e. the operators that belong to the Q-cohomology.
One can easily check that the Q-cohomology is given by operators of the form

Oφ = φi1···ipχ
i1 · · ·χip , (3.33)

where φ = φi1···ipdxi1 ∧ · · · ∧ dxip is a closed p-form representing a non-trivial class in Hp(X).
Therefore, in this case the Q-cohomology is in one-to-one correspondence with the de Rham
cohomology of the target manifoldX. This is in agreement with the fact thatQ can be interpreted
as the de Rham differential on X. Notice that the degree of the differential form corresponds
to the ghost number of the operator. Moreover, one can derive a selection rule for correlation
functions of such operators: the vacuum expectation value 〈Oφ1 · · · Oφ`〉 vanishes unless

∑̀
k=1

deg(Oφk) = 2d(1− g) + 2

∫
Σg

x∗(c1(X)), (3.34)

where deg(Oφk) = deg(φk) and c1(X) is the first Chern class of the Kähler manifold X. This
selection rule arises as follows: the twisted theory has a U(1) ghost current, a global U(1)
symmetry that rotates the twisted fermions. Since χ and ρ have opposite ghost numbers, this
symmetry is anomalous, and the anomaly is given by the r.h.s. of (3.34), which calculates the
number of zero modes of the twisted Dirac operator (in other words, the r.h.s. is minus the ghost
number of the vacuum). As usual in quantum field theory, the operators with non-trivial vacuum
expectation values have to soak up the zero modes associated to the anomaly. It is interesting
to note that, for Calabi–Yau threefolds, i.e. Kähler manifolds of complex dimension 3, and such
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that c1(X) = 0, the last term in (3.34) vanishes and the ghost number anomaly is 6 − 6g, as
in the usual bosonic string. This also indicates that, for g > 1, the theory is trivial since the
correlation functions of topological observables vanish.

As we have seen, in such a cohomological field theory one can compute correlation functions
by just doing a semi-classical computation. From the argument in (3.8), any field configuration
which gives a nonzero contribution to {Q, V } will not contribute to the path integral, since it
will be suppressed in the ~→ 0 limit. But it is clear by looking at (3.22) that any holomorphic
map x : Σg → X, i.e. a map satisfying

∂z̄x
I = 0 (3.35)

leads to a vanishing bosonic action. The holomorphic maps are the instanton configurations of
the nonlinear sigma model on a Kähler target. Therefore, the semiclassical evaluation of the
path integral in the A model will involve a sum over these instanton sectors. These sectors are
classified topologically by the homology class

β = x∗[(Σg)] ∈ H2(X,Z). (3.36)

Sometimes it is useful to introduce a basis [Sa] of H2(X,Z), where a = 1, · · · , h1,1(X), in such a
way that we can expand β as

β =
∑
a

na[Sa]. (3.37)

The instanton sectors are then labelled by h1,1(X) integers na. These instantons are also called
worldsheet instantons. If we introduce the complexified Kähler parameters with respect to this
basis,

ta =

∫
Sa

J , i = 1, · · · , h1,1(X), (3.38)

where J is the complexified Kähler form of X, we can write∫
Σg

x∗(J ) =

∫
β
J =

∑
a

nat
a. (3.39)

A simple analysis (see, for example, [4, 6]) shows that the contribution of an instanton sector to
the path integral reduces to an integration over the moduli space of instantons in that sector.

We will now focus on operators of the form

φ
(0)
A = AIJχ

IχJ , (3.40)

where
A = AIJdxI ∧ dxJ (3.41)

is a closed (1, 1)-form. It can be seen that the 2-form operator

−AIJ
(
∂zx

I∂z̄x
J̄ − ∂z̄xI∂zxJ̄

)
, (3.42)

satisfies the descent equations (3.9) (see below, (3.121), for a derivation). Therefore, due to our
general discussion, we can use to perturb the action. The corresponding integrated operator can
be written as ∫

Σg

x∗(iA), (3.43)
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where A is the differential form (3.41). This perturbation has an easy interpretation: it corre-
sponds to a shift

J → J − iA (3.44)

in the second term of (3.30), involving the complexified Kähler form. We can interpret it as a
deformation that changes the Kähler form chosen to construct the model. This means that the
observables of the form (3.40), of which there are h1,1(X), correspond to deformations of the
Kähler structure.

Let us now present some results for the correlation functions of the A model on a Calabi–Yau

threefold X involving three operators φ
(0)
A (3.40). The selection rule (3.34) says that, in genus

g = 0 (i.e. when the Riemann surface is a sphere) and on a Calabi–Yau threefold, these correlation
functions are generically non-vanishing. The computation of a given correlation function involves
summing over the different topological sectors of worldsheet instantons. In the trivial sector, i.e.
when β = 0, the image of the sphere is a point in the target. The moduli space of instantons is
just the target space X, and the correlation function is just

κabc =

∫
X
Aa ∧Ab ∧Ac, (3.45)

which is the classical intersection number of the divisors associated to these forms. The non-
trivial instanton sectors give an infinite series. The final answer is

Cabc = −〈φ(0)
Aa
φ

(0)
Ab
φ

(0)
Ac
〉 = −κabc −

∑
β

I0,3,β(Aa, Ab, Ac)Q
β. (3.46)

Here we have used the notation

Qa = e−t
a
, Qβ =

∏
a

Qna
a . (3.47)

This correlation function is called the Yukawa coupling for historical reasons. The coefficient
I0,3,β(Aa, Ab, Ac) ‘counts’ in an appropriate sense the number of holomorphic maps from the

sphere to the Calabi–Yau that send the point of insertion of φ
(0)
Ai

to the divisor Di which is
Poincaré dual to Ai. It can be shown that the coefficients I0,3,β(Aa, Ab, Ac) can be written as

I0,3,β(Aa, Ab, Ac) = N0,β

∫
β
Aa

∫
β
Ab

∫
β
Ac, (3.48)

in terms of invariants N0,β that encode all the information about the three-point functions (3.46)
of the topological sigma model. The invariants N0,β are our first example of Gromov–Witten
invariants. It is convenient to put all these invariants together in a generating functional called
the prepotential:

F0(t) = − 1

3!
κabct

atbtc +
∑
β

N0,β Q
β. (3.49)

This prepotential depends on the h1,1(X) complexified Kähler parameters of the Calabi–Yau X.

Exercise 3.2. Show that
∂3F0

∂ta∂tb∂tc
= Cabc = −〈AaAbAc〉. (3.50)

– 14 –



3.3 The type B model

The field content of the type B model is the following: a map x : Σg → X, which is a scalar,

commuting field, two sets of Grassmann fields ηI , θI ∈ x∗(TX), which are scalars on Σg, and a
Grassmannian one-form on Σg, ρ

I
α, with values in x∗(TX). We also have commuting auxiliary

fields F I , F I . We follow here the formulation presented in [7]. The Q-transformations read

[Q, xI ] = 0,

[Q, xI ] = ηI ,

{Q, ρIz} = ∂zx
I

{Q, ρIz̄} = ∂z̄x
I ,

{Q, ηI} = 0,

{Q, θI} = GIJF
J ,

[Q, F I ] = Dzρ
I
z̄ −Dz̄ρ

I
z +RIJLKη

LρJz ρ
K
z̄ ,

[Q, F I ] = −ΓI
JK
ηJFK ,

(3.51)

and satisfy Q2 = 0. Notice that Q acts differently on holomorphic and anti-holomorphic co-
ordinates. In contrast to what happens in the type-A model, it depends explicitly on the splitting
between holomorphic and anti-holomorphic co-ordinates on X, in other words, it depends explic-
itly on the choice of complex structure on X. If we interpret ηI as a basis for anti-holomorphic
differential forms on X, the action of Q on xI , xI may be interpreted as the Dolbeault anti-
holomorphic differential ∂. The action for the theory is

SB =

∫
Σg

d2z
[
GIJ

(
∂zx

I∂z̄x
J + ∂z̄x

I∂zx
J
)
− ρIz

(
GIJDz̄η

J +Dz̄θI
)

− ρIz̄
(
GIJDzη

J −DzθI
)
−RIJLKη

LρJz ρ
K
z̄ θI −GIJF

IF J
]
.

(3.52)

We can explicitly introduce the metric on Σg in this action and verify that it is Q-exact:

SB = {Q, V }, (3.53)

where V is now given by

V =

∫
Σg

d2z
√
g
[
GIJ̄g

µνρIµ∂νx
J̄ − F IθI

]
. (3.54)

Finally, we also have a U(1) ghost number symmetry, in which x, η, θ and ρ have ghost numbers
0, 1, 1, and −1, respectively.

Since the action is Q-exact, the theory is topological and the semi-classical approximation
is exact. In contrast to the type-A model, only constant maps x : Σg → X contribute to the
path integral in the B model. This is because the bosonic part of the action in (3.52) does not
vanish unless x is constant (notice that it contains the bosonic part of the A model Lagrangian,
plus its complex conjugate). Any nonconstant configuration will lead to a nonzero action which
is suppressed as ~ → 0 in (3.8). It follows that path integrals in the type-B model reduce to
integrals over X, as found by Witten [6].

What are the observables in this theory? It is easy to see that the operators in the Q-
cohomology are of the form

Oφ = φ
J1···Jq
I1···Ip

ηI1 · · · ηIpθJ1 · · · θJq , (3.55)

where

φ = φ
J1···Jq
I1···Ip

dxI1 ∧ · · · ∧ dxIp
∂

∂xJ1
∧ · · · ∧ ∂

∂xJq
(3.56)
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is an element of Hp

∂
(X,∧qTX) (more precisely, these operators are closed on-shell, by using

the equations of motion which set F I = 0). Therefore, the Q-cohomology is in one-to-one
correspondence with the twisted Dolbeault cohomology of the target manifold X. We can then
consider correlation functions of the form

〈
∏
a

Oφa〉. (3.57)

This correlation function vanishes unless the following selection rule is satisfied:∑
a

pa =
∑
a

qa = d(1− g), (3.58)

where g is the genus of the Riemann surface. This selection rule comes from a U(1)L × U(1)R
anomalous, global symmetry of the model which refines the ghost number, as we will se below.
Due to the arguments presented above, this correlation function can be computed in the semi-
classical limit, where the path integral reduces to an integration over the target X. The product
of operators in (3.57) corresponds to a form in Hd

∂
(X,∧dTX). To integrate such a form over X

we crucially need the Calabi–Yau condition. This arises as follows. One of the most important
properties of Calabi–Yau manifolds (which can actually be taken as their defining feature) is that
they have a holomorphic, nowhere-vanishing section Ω of the canonical bundle KX = Ωd,0(X).
Since the section is nowhere-vanishing, the canonical line bundle is trivial and we recover the
condition c1(KX) = c1(X) = 0. This means in particular that we have an invertible map

′ : Ω0,p(∧qTX) −→ Ωd−q,p(X) (3.59)

which sends φ in (3.56) to

φ′ ≡ φ ∧ Ω = ΩI1···IqIq+1···Idφ
I1···Iq
J1···Jp

dxIq+1 · · · ∧ dxId ∧ dxJ1 · · · ∧ dxJp (3.60)

where the (d, 0)-form Ω is used to contract the indices. Since Ω is holomorphic, this descends
to the ∂-cohomology. It then follows that an element in Hd

∂
(X,∧dTX) maps to an element in

H0,d

∂
(X). After further multiplication by Ω, one can then integrate a (d, d)-form over X. This is

the prescription to compute correlation functions like (3.57).
An important example of this procedure is the case of a Calabi–Yau threefold, d = 3, and

operators of the form

Oφ = φJ
I
ηIθJ (3.61)

associated to forms in H1
∂
(X,TX), or by using (3.60), to forms in H2,1

∂
(X). These operators

are important since, as we will see, they correspond to infinitesimal deformations of the complex
structure of X. The selection rule (3.58) says that we have to integrate three of these operators,
and the correlation function reads in this case

Cabc = 〈OφaOφbOφc〉 =

∫
X

Ω ∧ (φa)
I1
J1

(φb)
I2
J2

(φc)
I3
J3

ΩI1I2I3dzJ1 ∧ dzJ2 ∧ dzJ3 . (3.62)

This correlation function is the B-model version of the Yukawa coupling. It turns out that,
in contrast to the A-model correlation functions, the Yukawa couplings of the B-model can be
computed more or less straightforwardly. In order to do this, we have to relate them to a more
general geometric problem which is the variation of complex structures of the CY manifold X,
and which is addressed in the next subsection.

Some remarks are in order:
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1. The computation of the Yukawa coupling depends on the normalization of Ω. Since this is a
nowhere vanishing holomorphic form, it can be redefined by multiplying it by a nonvanishing
constant on X. As we will see when we consider the problem in the context of variation
of complex structures, this means that Ω is actually a section of a line bundle L over the
moduli space of complex structures M, therefore Cabc is a section of L2.

2. Notice that the map (3.60) is invertible. In the three-fold case, the only one we will consider
in certain detail, the inverse map is simply

φI
J

=
1

2|Ω|2
Ω
IKL

φ′
KLJ

(3.63)

where

|Ω|2 =
1

3!
ΩIJKΩ

IJK
(3.64)

3. One can use the operators (3.61) and the descent procedure to construct topological per-
turbations of the B-model. Here, these perturbations are more subtle, as pointed out in
[6], due to the fact that the observables are only closed on-shell. A detailed treatment of
these perturbations and their connection to Kodaira–Spencer theory can be found in [7].

3.4 N = 2 supersymmetry

Let us first summarize the main results on the topological sigma models.

A model B model

field configurations holomorphic maps constant maps

moduli/observables Kähler parameters complex parameters

prepotential F0 Gromov–Witten invariants period integrals

In this and the next section, we derive these models from what is called twisted N = 2
supersymmetry. First we give a brief summary of the N = 2 supersymmetric sigma model. We
will follow very closely the presentation of [5], but adapt the conventions to those in [8]. This
amounts to exchange z ↔ z̄ in [5].

Let us first state our notation and conventions for N = 2 supersymmetry. Our choice of
Euclidean Dirac matrices γµ is

(γ1)α
β = σ1, (γ2)α

β = −σ2,

where σ1, σ2 are Pauli matrices. We will denote the spinor indices by α = +,−, and they are
lowered and raised by the matrix Cαβ = σ1, so that (γ1)αβ = 1αβ, (γ2)αβ = i(σ3)αβ.

The generators of N = 2 supersymmetry are denoted by Qαa, where α = +,− are Lorentz
indices, and a = +,− are R-charge indices. The N = 2 supersymmetry algebra contains the
following relations:

{Qα+, Qβ−} =γµαβPµ,

{Qα±, Qβ±} =0,

[J,Q±a] =± 1

2
Q±a,

[FR, Q+±] =± 1

2
Q+±,

[FR, Q−±] =0,

[FL, Q+±] =0,

[FL, Q−±] =± 1

2
Q−±.

(3.65)
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We have assumed that there are no central charges in the algebra. J is the generator of Lorentz
SO(2) transformations and FL,R are the left and right internal U(1) currents, respectively. They
combine into vectorial and axial currents FV , FA as follows:

FV = FR + FL, FA = FR − FL. (3.66)

Notice that

{Q−,+, Q−,−} = 2∂z, {Q+,+, Q+,−} = 2∂z̄. (3.67)

We will consider here a theory for an N = 2 chiral multiplet. A convenient description of
this multiplet is by using N = 2 superspace in two dimensions, which is essentially identical
to the usual N = 1 superspace in four dimensions. In N = 2 superspace we have superspace
covariant derivatives Dαa satisfying the following algebra:

{D−,+ , D−,−} = 2∂z, {D+,+ , D+,−} = 2∂z̄, (3.68)

while all other anti-commutators among the Dαa vanish. The two basic N = 2 multiplets are
described by a scalar N = 2 superfield Φ satisfying the following relations:

D+,−Φ = D−,−Φ = 0, chiral,

D+,−Φ = D−,+Φ = 0, twisted chiral.
(3.69)

There exist also the antichiral and the twisted antichiral versions of these multiplets,

D+,+Φ = D−,+Φ = 0, antichiral,

D+,+Φ = D−,−Φ = 0, twisted antichiral.
(3.70)

Let us now consider a collection of d chiral superfields ΦI , and d anti-chiral superfields ΦI ,
where I, I = 1, · · · , d. We can define component fields for these superfields as follows:

ΦI | = xI ,

Dα,+ΦI | = ψIα,+,

D−,+D+,+ΦI | = F I−+,++,

ΦI | = xI ,

Dα,−ΦI | = ψIα,−,

D+,−D−,−ΦI | = F I+−,−−,

(3.71)

where the vertical bar means that we take the component of the superfield with θ = 0. Here,
F I−+,++ and F I+−,−− are auxiliary fields. We can also write down very easily the supersymmetry
transformations of the different component fields under the N = 2 supersymmetry. For an N = 2
superfield the transformation rule takes the form

δΦ = ηαaQαaΦ, (3.72)
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where ηαa is a constant N = 2 supersymmetry parameter. Projecting onto components, and
using the definitions (3.71), one finds

δxI = η+,+ψI+,+ + η−,+ψI−,+,

δψI+,+ = η−,+F I−+,++ + 2η+,−∂z̄x
I ,

δψI−,+ = −η+,+F I−+,++ + 2η−,−∂zx
I ,

δF I−+,++ = 2η−,−∂zψ
I
+,+ − 2η+,−∂z̄ψ

I
−,+,

δxI = η−,−ψĪ−,− + η+,−ψI+,−,

δψI−,− = η+,−F I+−,−− + 2η−,+∂zx
I ,

δψI+,− = −η−,−F Ī−+,−− + 2η+,+∂z̄x
I ,

δF I+−,−− = 2η+,+∂z̄ψ
Ī
−,− − 2η−,+∂zψ

Ī
+,−.

(3.73)

The transformations under the R-symmetry can be read off from the U(1) indices of the fields.

The supersymmetric sigma model is defined by the following action in superspace for the
superfields ΦI , ΦI , I, I = 1, · · · , d:

SK =
1

2

∫
d2z d4θK(ΦI ,ΦĪ). (3.74)

Geometrically, this is a sigma model whose target is a Kähler manifold of complex dimension d,
with local complex co-ordinates given by xI , xI . The Kähler potential is K(xI , xI), while the
Kähler metric is given by

GIJ̄ =
∂2K

∂xI∂xJ̄
. (3.75)

The odd part of the measure can be expressed in terms of covariant derivatives as follows

d4θ → D−,+D+,+D−,−D+,−. (3.76)

This makes possible to compute (3.74) efficiently. A simple computation indeed produces the
action

1

2

∫
d2z
[
GIJ̄

(
− F I−+,++F

J̄
+−,−− − 2ψI++Dzψ

J̄
+− − 2ψJ̄−+Dzψ

I
−− + 2∂zx

I ∂z̄x
J̄ + 2∂z̄x

I∂zx
J̄
)

+ ∂K∂L̄GIJ̄ψ
K
++ψ

L̄
−−ψ

I
−+ψ

J̄
+− − ∂KGIJ̄ψI−+F

J̄
+−,−−ψ

K
++ − ∂K̄GIJ̄ψK̄+−F I−+,++ψ

J̄
−−

]
.

(3.77)
In this equation, Dµ is the covariant derivative on sections of the pull-back of the tangent bundle,

Dµψ
I
−+ = ∂µψ

I
−+ + (∂µx

J)ΓIJKψ
K
−+, (3.78)

The action (3.77) is not covariant, but can be made so by redefining the auxiliary fields

F I−+,++ →F I−+,++ + ΓIKJψ
J
−+ψ

K
++,

F Ī+−,−− →F Ī+−,−− + ΓĪK̄J̄ψ
J̄
+−ψ

K̄
−−.

(3.79)
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The action (3.77) then becomes,

SK =
1

2

∫
d2z
[
GIJ̄

(
− 4xI∂z∂z̄x

J̄ − 2ψI++Dzψ
J̄
+− − 2ψJ̄−+Dzψ

I
−− − F I−+,++F

J̄
+−,−−

)
+RĪJK̄Lψ

K
++ψ

L̄
−−ψ

I
−+ψ

J̄
+−

]
.

(3.80)

This is not the most general action that can be written in superspace, since it only involves
D-terms. One can add F-terms, i.e. a superpotential W (XI) for the chiral multiplets:∫

d2z
(
d2θW (XI) + d̂2θW (X Ī)

)
(3.81)

Here, the odd part of the measure is expressed as

d2θ → D+,+D−,+,

d̂2θ → D−,−D+,−.
(3.82)

This leads to Landau–Ginzburg models in two dimensions. One can also add a different set
of potential terms that do not admit a superspace representation. We will not consider these
more general models here, although they lead to very interesting topological field theories in two
dimensions. In particular, Landau–Ginzburg models play a crucial role in many developments of
topological string theory.

It is also possible to consider a superpotential for twisted chiral superfields. In that case, the
odd part of the measure reads

d2θ → D+,+D−,−,

d̂2θ → D−,+D+,−.
(3.83)

3.5 Topological twist

The supersymmetric sigma model that we defined in the last section can be twisted in two different
ways to produce two inequivalent topological quantum field theories in two dimensions. These
two inequivalent twisting procedures are called the A-twist and the B-twist, and they give rise to
the topological type-A sigma model and the topological type-B sigma model, respectively. The
A-twisting was introduced by Witten in [4], while the B-twisting was introduced in [5, 6, 9].

The twisting procedure amounts to a redefinition of the spin of the fields (equivalently, of
the energy-momentum tensor of the theory) by using the internal FV or FA currents. In the
A-twist, one redefines the spin current as follows:

A− twist : J̃ = J + FV , (3.84)

while in the B-twist the redefinition is given by

B− twist : J̃ = J + FA. (3.85)

There are other possible (albeit equivalent) conventions. The convention used here is the one in
[8].

The above redefinition means that we are replacing the U(1)E Lorentz symmetry by the
diagonal embedding U(1)′E ⊂ U(1)E×U(1)V,A for the A- and the B-twist, respectively. It is very
illuminating to make a table where we write down the quantum numbers of all the components
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U(1)V U(1)A U(1)E A-twist U(1)′E B-twist U(1)′E
Q+,+ +1/2 +1/2 +1/2 −1 −1

Q−,+ +1/2 −1/2 −1/2 0 +1

Q+,− −1/2 −1/2 +1/2 0 0

Q−,− −1/2 +1/2 −1/2 +1 0

Table 1. Quantum numbers of Qαa under the different U(1) symmetries.

of Qαa under the different symmetries involved. We see that in both cases one gets two scalar
supercharges, and one vector-valued supercharge. This suggests defining the following operator,
also called the topological charge,

A− twist : Q = Q+,− +Q−,+,

B− twist : Q = Q+,− +Q−,−,
(3.86)

which is a scalar in the resulting theories. Q is a Grassmannian, scalar charge, so twisted theories
violate the spin-statistics theorem. We will also define a vector charge Gµ through the following
equations:

A− twist : Gz = Q−,−, Gz̄ = Q+,+,

B− twist : Gz = Q−,+, Gz̄ = Q+,+.
(3.87)

One can check that, as a consequence of the supersymmetry algebra, the topological charge is
nilpotent,

Q2 = 0, (3.88)

and also that
{Q, Gµ} = Pµ. (3.89)

These are the most important relations characterizing the so-called topological algebra that is
obtained by the twist of the N = 2 algebra.

The transformations of the fields under the topological charge Q can be simply obtained
from the supersymmetry transformations (3.73). In the case of the A-twists, it is convenient to
define the fields

χI = ψI−,+,

χĪ = ψĪ+,−,

ρIz̄ = ψI+,+,

ρĪz = ψĪ−,−,

F̃ Iz̄ = F I−+,++,

F̃ Īz = F Ī+−,−−.
(3.90)

The action (3.80) becomes, after the twisting,

S =
1

2

∫
Σg

d2z
[
GIJ

(
− F̃ Iz̄ F̃ Jz − 2ρIz̄Dzχ

J − 2ρJzDz̄χ
I + 2∂z̄x

I∂zx
J + 2∂zx

I∂z̄x
J
)

+∂K∂LGIJρ
K
z̄ ρ

L
z χ

IχJ − ∂KGIJχ
I F̃ Jz ρ

K
z̄ − ∂KGIJχ

K F̃ Iz̄ ρ
J
z

]
. (3.91)

The topological charge Q acts as follows on the fields:

[Q, xi] =χi,

{Q, χi} =0,

{Q, ρIz̄} =2∂z̄x
I + F̃ Iz̄ ,

{Q, ρIz} =2∂zx
I + F̃ Iz ,

[Q, F̃ Iz̄ ] =− 2∂z̄χ
I ,

[Q, F̃ Iz ] =− 2∂zχ
I .
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In particular, we can write

Sσ = SK − i

∫
Σg

x∗(B) (3.92)

as

Sσ =

∫
d2z {Q, vG} − x∗(J ), (3.93)

where

vG =
1

2
GIJ

[
ρIz̄∂zx

J + ρJz ∂z̄x
I − 1

2
ρIz̄F̃

J
z −

1

2
ρJz F̃

I
z̄

]
+

1

4

(
∂KGIJχ

KρJz ρ
I
z̄ + ∂KGIJχ

KρIz̄ρ
J
z

)
.

(3.94)

Later on it will be useful to think regard vG as a functional defined for an arbitrary (1, 1) tensor,
and not only the metric GIJ . In order to obtain (3.22) we redefine the auxiliary fields as in
(3.79):

F Iz̄ = F̃ Iz̄ + ΓIKJχ
JρKz̄ , F Iz = F̃ Iz + ΓI

KJ
χJρKz . (3.95)

Finally, we point out that the ghost number current of the A model is just −2FA.

To make contact with the B-model introduced above it is convenient to define the following
fields:

ρIz = 2ψI−,+,

ρIz̄ = 2ψI+,+

χI = ψI+,−,

χI = ψI−,−,

F I = 2F I−+,++,

F I = 2F I+−,−−.
(3.96)

as well as the following redefinition suggested by Witten in [6]:

ηĪ = χI + χĪ ,

θI = GIJ̄(χJ − χJ).
(3.97)

In this way one recovers the type B topological sigma model. We also point out that the ghost
number current of the model is now −2FV , and that the refined ghost numbers which were used
in (3.58) come precisely from FL, FR.

3.6 Topological sigma models as twisted superconformal field theories

The N = (2, 2) supersymmetric sigma model turns out to be conformally invariant precisely in
the Calabi–Yau case c1(X) = 0. This is due to the fact that the β function is proportional to the
Ricci tensor. Therefore, the supersymmetry algebra (3.65) gets promoted in this case to the full
N = (2, 2) superconformal algebra. This algebra has two isomorphic sectors (L and R), and we
will put a bar over the generators in the R sector. In the L sector we have two supersymmetric
currents G±(z), an energy momentum tenson T (z), and an R-current J(z). The modes of these
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currents satisfy the superconformal algebra

{G−r , G+
s } = 2Lr+s − (r − s)Jr+s +

c

3
(r2 − 1/4)δr+s,0,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0,

[Ln, G
±
r ] =

(n
2
− r
)
G±n+r

[Ln, Jm] = −mJn+m,

[Jn, Jm] =
c

3
nδn+m,0,

[Jn, G
±
r ] = ±G±n+r,

(3.98)

where c is the central charge. There is a similar set of relations for the R sector. The currents
G± have conformal weight h = 3/2, and we point out that in a unitary theory G+ = (G−)†. We
will consider the NS sector of the algebra where m,n ∈ Z while r, s ∈ Z + 1

2 .
The supersymmetric algebra is present in the superconformal algebra by doing the following

identifications for the supercharges:

Q+,+ = G
−
−1/2, Q−,+ = G+

−1/2,

Q+,− = G
+
−1/2, Q−,− = G−−1/2.

(3.99)

For the bosonic generators we have

Pz = L−1, Pz̄ = L−1,

FL =
1

2
J0, FR = −1

2
J0

(3.100)

while the spin J is given by
J = L0 − L0.

Let us now discuss the structure of the twisted theory after taking into account the extra
structure provided by conformal symmetry. We will discuss the A-model in detail. A similar,
“mirror” discussion, applies to the B-model.

After the A-twisting, two of the G currents have conformal weight h = 1, and lead to

G+
−1/2, G

+
−1/2,→ Q(z), Q(z̄), (3.101)

which add up to Q. The other two currents have spin 2 and lead to

G−−1/2, G
−
−1/2 → G(z), G(z̄), (3.102)

which are the operators introduced in (3.87). Since the conformal weight of the fields have
changed, their modding is changed as well. We have,

G(z) =
∑
n∈Z

Gnz
−n−2, G(z̄) =

∑
n∈Z

Gnz̄
−n−2,

Q(z) =
∑
n∈Z

Qnz
−n−1, Q(z̄) =

∑
n∈Z

Qnz̄
−n−1,

(3.103)
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therefore the twisting leads to the following change of modding in the superconformal algebra,

G+
s → Qm,

s→ m− 1

2
,

(3.104)

and
G−r → Gn,

s→ n+
1

2
,

(3.105)

Notice that, since Q(z) and Q(z̄) have spin 1, we can form two conserved, scalar charges

Q0 =

∮
dz Q(z), Q0 =

∮
dz Q(z), (3.106)

and the scalar supercharge (3.86) is given by

Q = Q0 +Q0. (3.107)

In order to have a consistent conformal algebra, we have to modify the energy-momentum tensor
of the theory as follows

T (z)→ T (z) +
1

2
∂J(z) (3.108)

and similarly for the R sector. It follows that the spin generator becomes

J =

∮
dz(zT (z)− z̄T (z̄))→ L0 − L0 +

1

2
(J0 − J0) = J + FV , (3.109)

which was our previous definition of twist (3.85) for the A model. Finally, exactness of the
energy-momentum tensor means in this language that

T (z) = {Q, G(z)}. (3.110)

One can check that the new currents form an algebra, sometimes called the conformal topological
algebra [10]. The CFT point of view makes clear that there are in fact two different, independent
topological charges (one for each chiral sector). Equivalently, together with Q there is another
nilpotent scalar charge

M = Q0 −Q0 (3.111)

as well as two other charges Gz, Gz̄. A perturbation of the action in CFT is given by∑
a

ta
∫

d2z φ(2)
a +

∑
a

t̄a
∫

d2z φ
(2)
a , (3.112)

where
φ(2)
a = {G−, [G−, φ(0)

a ]}, φ
(2)
a = {G+, [G

+
, φ

(0)
a ]}. (3.113)

In CFT, the fields φ
(0
a , φ

(0)
a are chiral (respectively, antichiral) fields. Indeed, one can see that a

(q, q) field becomes a Q-closed operator in the A model, while in the B-model it is a (a, c) field
that becomes a topological observable. Also, in CFT, the condition for the perturbation to be

marginal is that the operator φ
(0
a has conformal weights (h, h̃) = (1/2, 1/2). For an (a, a) field
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this means that its J0, J0 charges must be (1, 1). In the A-model, this corresponds precisely to
the operators (3.40).

Notice that, in the twisted topological theory, the holomorphic perturbation which couples
to ta becomes

{Gz, [Gz̄, φa]} (3.114)

which is nothing but the two-form descendant (φ
(2)
a )zz̄. The antiholomorphic perturbation which

couples to t̄a can be written as

{Q0, [Q0, φ
(0)
a ]} = −1

2
{Q, [M,φ

(0)
a ]}. (3.115)

and it is Q exact, therefore it should decouple from correlation functions. It turns out that this
is not the case, and this leads to the famous holomorphic anomaly, as we will discuss.

Let us work out the extended topological algebra in the A model. The action of the M , Gz,z̄
operators is easiliy obtained from (3.73) and reads,

[M,xI ] = −χI ,

[Gz, x
I ] = 0,

[Gz̄, x
I ] =

1

2
ρIz̄,

[M,xĪ ] = χĪ ,

[Gz, x
Ī ] =

1

2
ρĪz,

[Gz̄, x
Ī ] = 0,

(3.116)

{M,χI} = 0,

{Gz, χI} = ∂zx
I ,

{Gz̄, χI} = −1

2
F̃ Iz̄ ,

{M,χĪ} = 0,

{Gz, χĪ} = −1

2
F̃ Īz ,

{Gz̄, χĪ} = ∂z̄x
Ī ,

(3.117)

{M,ρIz̄} = 2∂z̄x
I − F̃ Iz̄ ,

{Gz, ρIz̄} = 0,

{Gz̄, ρIz̄} = 0,

{M,ρĪz} = −2∂zx
Ī + F̃ Īz ,

{Gz, ρĪz} = 0,

{Gz̄, ρĪz} = 0,

(3.118)

[M, F̃ Iz ] = −2∂zχ
I ,

[Gz, F̃
I
z ] = 0,

[Gz̄, F̃
I
z ] = ∂z̄ρ

I
z,

[M, F̃ Īz̄ ] = 2∂z̄χ
Ī ,

[Gz, F̃
Ī
z̄ ] = ∂zρ

Ī
z̄,

[Gz̄, F̃
Ī
z̄ ] = 0.

(3.119)

Here, F̃ Īz , F̃ Iz̄ are the auxililary fields introduced in (3.90).

We can now compute the perturbation (3.113). The first perturbation in (3.113) is nothing
but the descendant field φ(2) associated to an operator φ0. We will assume that φ(0) satisfies

[Q0, φ
(0)] = [Q0, φ

(0)] = 0 (3.120)

so that, from the point of view of N = 2 supersymmetry, it corresponds to a twisted chiral
operator. Let us consider operators of the form (3.40) where (3.41) satisfies ∂A = ∂A = 0
to comply with (3.120). A simple computation produces the following result for the canonical
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descendant,

φ
(2)
A = {Gz, [Gz̄, φ(0)]}

= −1

4

[
AIJ̄

(
− F̃ Iz̄ F̃ J̄z − 2ρIz̄Dzχ

J̄ − 2ρJ̄zDz̄χ
I + 4∂zx

I∂z̄x
J̄
)

+ ∂K∂L̄AIJ̄ρ
K
z̄ ρ

L̄
z χ

IχJ̄ − ∂KAIJ̄χI F̃ J̄z ρKz̄ − ∂K̄AIJ̄χK̄ F̃ Iz̄ ρJ̄z
]
,

(3.121)

which can be written as

φ
(2)
A = −AIJ

(
∂zx

I∂z̄x
J̄ − ∂z̄xI∂zxJ̄

)
− 1

2
{Q, vA}, (3.122)

where vA is the operator introduced in (3.94), but expressed in terms of the tensor AIJ instead
of GIJ . Therefore, up to a Q-exact piece, this is the two-form (3.42) on Σg associated to A, as
it should be since (3.122) is just the canonical solution to the descent equations.

What is φ
(0)

? This should correspond to a twisted antichiral field, i.e. it has to satisfy

{Gz, φ
(0)} = {Gz̄, φ

(0)} = 0. (3.123)

A natural candidate is the operator

φ
(0)
A =

1

4
AIJρ

I
z̄ρ
J
z = − i

8
εµνAIJρ

I
µρ

J
ν (3.124)

which is a two-form. These operators can be regarded as observables of the antitopological theory
[11].

Exercise 3.3. Check that the operator φ
(0)

indeed satisfies (3.123). For this one needs that

ΓIJKρ
J
z̄ ρ

K
z̄ = 0 (3.125)

due to the symmetry of the Christoffel symbol.

The perturbed operator corresponding to (3.124) can be easily computed. First notice that

[M,φ
(0)
A ] = vA, (3.126)

therefore

φ
(2)
A = −1

2
{Q, vA}

= −1

4

[
AIJ̄

(
− F̃ Iz̄ F̃ J̄z − 2ρIz̄Dzχ

J̄ − 2ρJ̄zDz̄χ
I + 4∂z̄x

I∂zx
J̄
)

+ ∂K∂L̄AIJ̄ρ
K
z̄ ρ

L̄
z χ

IχJ̄ − ∂KAIJ̄χI F̃ J̄z ρKz̄ − ∂K̄AIJ̄χK̄ F̃ Iz̄ ρJ̄z
]
.

(3.127)

A consequence of (3.121) and (3.127) is that (3.93) can be written as

Sσ =

∫
d2z {Q0, [Q0, φ

(0)

−G ]}+

∫
d2z {Gz, {Gz̄, φ(0)

−G}}, (3.128)

where G, G where introduced in (3.31). Therefore, perturbations of the form (3.121) correspond to
perturbations of the complexified Kähler form, and they are holomorphic in J , or equivalently,
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in the parameters ta introduced in (3.38). Perturbations of the form (3.127) correspond to
perturbations of the conjugate complexified Kähler form, and they are antiholomorphic on J ,
so they depend on t̄a. A similar conclusion holds for the B model. Of course, in the physical,
unitary supersymmetric sigma model, one has

ta∗ = t̄a, (3.129)

but in the topological field theory ta, t̄a can be regarded as independent variables, and they
indeed play a different role: the perturbations on ta lead to topological perturbations of the
action, while the perturbations on t̄a are Q-exact and in principle decouple.

4 Special geometry and the moduli space of complex structures

Good review references for this section are [12–15].

4.1 The moduli space of complex structures

The theory of deformation of complex structures was started by Kodaira and Spencer. A standard
review can be found in the book by Kodaira [16]. A complex manifold M can be considered as
a set of domains {Uj} in Cn glued by coordinate transformations fjk which are biholomorphic
functions. A deformation of the complex structure of X is a variation of these transition functions
depending on some complex parameters z = (z1, · · · , zs. This deformation generates a family of
complex manifolds that will be denoted by X . It follows from this definition that infinitesimal
deformations of X are always elements in the sheaf cohomology group H1(X,TX), which is
isomorphic to the Dolbeault group H1

∂
(X,TX). However, the converse is not true. In other

words, topological obstructions to integrate an infinitesimal deformation are found in general, and
therefore not every ∂̄-closed vector (0, 1)-form is associated to a family of complex manifolds. The
right condition for a vector (0, 1)-form φ(z) to represent a deformation of the complex structure
is that it verifies the Kodaira-Spencer equation

∂̄φ(z) =
1

2
[φ(z), φ(z)], (4.1)

and the initial condition φ(0) = 0. In (4.1) the bracket between a vector (0, p)-form φ =
∑

α φ
α∂α

and a vector (0, q)-form ψ =
∑

α ψ
α∂α is defined by:

[φ, ψ] =
∑
α,β

(
φα ∧ ∂αψβ − (−1)pqψα ∧ ∂αφβ

)
∂β. (4.2)

In coordinates, we can write

φ = φJ
I
dxI

∂

∂xJ
(4.3)

and the Kodaira–Spencer equation reads

∂[Iφ
L
J ]

= φK
[I
∂Kφ

L
J
. (4.4)

Notice that, at linear order, we have that indeed φ has to be in H1(X,TX).
Another, more intuitive way of understanding Kodaira–Spencer theory is to regard the de-

formation of complex structures as a deformation of the Dolbeault ∂-operator

∂
′
I = ∂I − φ

J
I
∂J , (4.5)
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Requiring now that the new Dolbeault operator is nilpotent, (∂
′
)2 = 0, leads immediately to (4.4).

It is then easy to see that a vector (0, 1)-form V is closed under the new Dolbeault operator if it
satisfies

∂V = [φ, V ]. (4.6)

This description of Kodaira–Spencer theory has a nice field theory realization [7] obtained by
considering deformations of the type B model, as suggested in [6].

The problem of topological obstructions can be now formulated as follows (we assume for
simplicity that there is a single parameter z for the complex structures): one can show that every
φ(z) representing a complex deformation verifies(

∂φ(z)

∂z

)
z=0

∈ H1(X,TX) (4.7)

so an infinitesimal deformation φ1 ∈ H1(X,TX) is unobstructed if one can find a solution φ(z)
to (4.1) such that (

∂φ(z)

∂z

)
z=0

= φ1. (4.8)

It has been proven by Tian [17] and Todorov [18] that, when X is a Calabi-Yau manifold,
every infinitesimal deformation is unobstructed. More precisely, given φ1 ∈ H1(X,TX), there is
a power expansion in the parameter z

φ(z) = φ1z + φ2z
2 + · · · (4.9)

such that φ(z) satisfies (4.1) and therefore corresponds to a deformation of the complex structure.
In fact, the vector (0, 1)-forms appearing in this series are obtained by solving inductively the
Kodaira–Spencer equation at order n in t:

∂̄φn =
1

2

n−1∑
i=1

[φi, φn−i]. (4.10)

In this way, when X is CY, deformations of the complex structure are in one to one correspon-
dence with ∂̄-closed vector (0, 1)-forms.

From this brief review we have two consequences: first of all, in the CY case, the moduli space
of complex structures is of dimension h2,1(X). This is easily seen by taking into account that, due
to the invertible map (3.60), ∂̄-closed vector (0, 1)-forms are in one-to-one correspondence with
∂̄-closed (2, 1) forms. We will denote by za, a = 1, · · · , h2,1(X), local complex coordinates for
this space. Second, the operators (3.56) for p = q = 1 correspond to infinitesimal deformations
of the complex structure of the CY X.

It turns out that, in the case of CY manifolds, the best way to understand the variation
of complex structures is by considering the holomorphic 3-form Ω as a function of the complex
deformation parameters ta. A basic result in the theory of deformation of complex structures is
that

∂Ω

∂za
= φa ∧ Ω + kaΩ ∈ H2,1(X)⊕H3,0(X), (4.11)

where φa is a closed, vector (0, 1) form, and ka might depend on the moduli but not on the
coordinates of X. Using the map (3.60) one can write this as

∂Ω

∂za
= χa + kaΩ (4.12)
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where χa = φ′a is a (2, 1) form. The result (4.11) can be easily understood by taking into account
that a deformation (4.5) induces a deformation

dxI → dφx
I = dxI + φI

J
dxJ (4.13)

of the basis of holomorphic differentials. Therefore, a closed (3, 0) form becomes a linear combi-
nation of a closed (3, 0) form and a closed (2, 1) form.

By the same token, one finds that

∂2Ω

∂za∂zb
∈ H3,0(X)⊕H2,1(X)⊕H1,2(X) (4.14)

and the (2, 1) part of this is given by

φb ∧ ∂aΩ = φa ∧ φb ∧ Ω = (φa ∧ φb)′. (4.15)

Due to type considerations, it follows that∫
X

Ω ∧ ∂Ω

∂za
= 0 (4.16)

and also that ∫
X

Ω ∧ ∂2Ω

∂za∂zb
= 0. (4.17)

If we now take a derivative of this last equation, we find∫
X

Ω ∧ ∂3Ω

∂za∂zb∂zc
= −

∫
X

∂Ω

∂zc
∧ ∂2Ω

∂za∂zb
(4.18)

The term in the r.h.s. is nothing but (3.62), therefore we find the following alternative expression
for the Yukawa coupling

Cabc =

∫
X

Ω ∧ ∂3Ω

∂za∂zb∂zc
. (4.19)

Remark 4.1. This is denoted by −κabc in [12]. This introduces certain minus signs in the
equations, but preserves the relation to the third derivative of the prepotential, as we will see.

The moduli space of complex structures, whose infinitesimal deformations can be identified
with the elements in H1,2(X), has a very rich geometric structures. We define the Kähler potential
as

K(X,X) = − log

(
i

∫
X

Ω ∧ Ω

)
. (4.20)

Since we have a Kähler potential, the moduli space of complex structures is a Kähler manifold.
The Kähler metric is given by

Gab̄ = ∂a∂b̄K =

∫
X ∂aΩ ∧ Ω

∫
X Ω ∧ ∂b̄Ω(∫

X Ω ∧ Ω
)2 −

∫
X ∂aΩ ∧ ∂b̄Ω∫
X Ω ∧ Ω

(4.21)

where we have used the fact that Ω is holomorphic w.r.t. the generic complex coordinates za.
Using now the key equation (4.12) we obtain∫

X
∂aΩ ∧ Ω = ka

∫
X

Ω ∧ Ω,∫
X
∂aΩ ∧ ∂b̄Ω =

∫
X

(χa + kaΩ) ∧
(
χb̄ + k̄b̄Ω

)
=

∫
X
χa ∧ χb̄ + kak̄b̄

∫
X

Ω ∧ Ω,

(4.22)
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therefore

Gab̄ = −
∫
X χa ∧ χb̄∫
X Ω ∧ Ω

. (4.23)

As in any Kähler manifold, we have the following formulae for the Christoffel symbols

Γabc = Gaā∂bGcā, Γāb̄c̄ = Gaā∂̄b̄Gac̄. (4.24)

There is an additional structure on M which is related to the freedom in rescaling Ω,

Ω −→ ef(X)Ω. (4.25)

This induces the following transformation on the Kähler form,

K(X,X) −→ K(X,X)− f(X)− f(X). (4.26)

These transformations should be regarded as a U(1) gauge symmetry. Therefore, there is a U(1)
gauge bundle, i.e. a line bundle L (called the Hodge bundle) over the moduli space of complex
structures M, and Ω is then a section of L. Since there is a gauge symmetry, there should be
also a gauge connection on L. It is given by

Aa = ∂aK. (4.27)

Notice that, with this connection, the covariant derivative

Da = ∂a + ∂aK (4.28)

of the section Ω transforms well under (4.25) and (4.26):

DaΩ→ efDaΩ. (4.29)

Let us now go back to (4.12). We can write

∂

∂za
e−K = i

∂

∂za

∫
X

Ω ∧ Ω = i

∫
X

∂Ω

∂za
∧ Ω = ika

∫
X

Ω ∧ Ω = kae
−K , (4.30)

and we conclude
ka = −Ka. (4.31)

In particular, we can write (4.12) as
DaΩ = χa. (4.32)

In general, we will have sections Ψ of the bundle Ln ⊗ Lm, whose covariant derivatives are

DaΨ = (∂a + nKa) Ψ, DāΨ = (∂ā +mKā) Ψ. (4.33)

We note that, in view of the transformation (4.26), the exponential of the Kähler parameter eK

has charges (−1,−1).
It follows from the above considerations that

[Da, Db̄]Ω = (∂a +Ka) (∂b̄Ω)− ∂b̄ (∂aΩ +KaΩ) (4.34)

i.e.
[Da, Db̄]Ω = −Gab̄Ω. (4.35)
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The commutator in the l.h.s. defines the curvature of the bundle L, and we conclude that

Fab̄ = −Gab̄. (4.36)

It follows from this that the Kähler form onM is 2π times the Chern class of L. In this geometric
setting, the Yukawa coupling Cabc has to be understood as a holomorphic section of the bundle

Sym3(T ∗M)⊗ L2. (4.37)

There is a natural induced connection for tensors in T ∗M⊗Ln, namely the product connec-
tion of the Riemannian connection onM and the connection on L. The corresponding covariant
derivative is

Da = Da + n∂aK, (4.38)

where Da is the covariant derivative on T ∗M, i.e.

[Da]cb = δcb∂a − Γcab. (4.39)

Let us now derive some further important properties of the geometry of moduli space. We
want to calculate the covariant derivatives of χa and χb̄. We note that they are sections of L and
L, respectively. Let us start with the easier one,

Daχb̄ = ∂aχb̄ = ∂a (∂bΩ +KbΩ) , (4.40)

and we conclude that
Daχb̄ = Gab̄Ω. (4.41)

Let us now calculate Daχb. It should be a form in H2,1(X)⊕H1,2(X), so let us write

Daχb = A c
ab χc +B c̄

ab χc̄. (4.42)

To make notations lighter, let us introduce the inner product of forms

〈α, β〉 = −i

∫
X
α ∧ β. (4.43)

In this notation, the equality (4.23) can be written as

〈χa, χb̄〉 = Gab̄ e−K . (4.44)

Let us now take the inner product of equation (4.42) with χd̄:

〈Daχb, χd̄〉 = A c
ab 〈χc, χd̄〉 = Aabc̄e

−K . (4.45)

On the other hand,
〈Daχb, χd̄〉 = Da〈χb, χd̄〉 − 〈χb, DaDd̄Ω〉. (4.46)

The first term in the r.h.s. vanishes. Indeed, we have

Da〈χb, χd̄〉 = (Da +Ka)
(
e−KGbd

)
= e−KDa

(
Gbd
)

= 0, (4.47)

since a Riemannian metric is covariantly constant. The second term also vanishes, since

− 〈χb, DaDd̄Ω〉 = −〈χb, [Da, Dd̄]Ω〉 = −〈χb, Gad̄Ω〉 = 0, (4.48)
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since it is the product of a (2, 1) form with a (0, 3) form. We conclude that A c
ab = 0. Let us now

calculate the remaining coefficient. We have, after taking the inner product with χd,

− e−K Babd = 〈Daχb, χd〉 = 〈Daχb, DdΩ〉 = Dd〈Daχb,Ω〉 − 〈DdDaχb,Ω〉 (4.49)

Let us evaluate these terms. We have

〈Daχb,Ω〉 = 〈DaDbΩ,Ω〉 = Da〈DbΩ,Ω〉 − 〈DbΩ, DaΩ〉 = Da〈χb,Ω〉 − 〈χb, χa〉 = 0, (4.50)

where all pairings vanish due to degree considerations. We conclude that

e−KBabd = 〈DdDaDbΩ,Ω〉 = 〈∂3
abdΩ,Ω〉 = −〈Ω, ∂3

abdΩ〉 = iCabc. (4.51)

Here, we have taken into account that the only term in DdDaDbΩ which has a non-zero pairing
with Ω is the triple derivative.

Let us now summarize the properties of the (2, 1) forms in the following list:

DaΩ = χa,

Daχb = i eKC c̄
ab χc̄,

Daχb̄ = Gab̄Ω,

DaΩ = 0.

(4.52)

By using these relations, we can derive an important identity for the Riemann tensor of the
moduli space of complex structures. The commutator of covariant derivatives gives property

[Da, Db̄]χc = −Gab̄χc + ∂b̄Γ
d
acχd. (4.53)

The first term in the r.h.s. is the curvature of the U(1) bundle, as we saw in (4.35), while the
second term is the curvature of TM. Let us calculate the commutator:

DaDb̄χc = DaGcb̄Ω = Gcb̄χa, (4.54)

where we used that Gcb̄ is covariantly constant. On the other hand,

Db̄Daχc = Db̄

(
ieKC d̄

ac χd̄

)
= ieKC d̄

ac Db̄χd̄ = e2KC d̄
ac C

m
b̄d̄ χm. (4.55)

Here, we have used (4.52) and the fact that

Db̄e
K = Db̄Cpqr = 0. (4.56)

Putting everything together, we obtain

∂b̄Γ
d
ac = Gab̄δ

d
c +Gcb̄δ

d
a − CacmC

md
b̄ , (4.57)

where we have defined
C
ij

k̄ = e2K C k̄āb̄G
iāGjb̄. (4.58)

In terms of the Riemann curvature tensor we can write

Rab̄cd̄ = Gab̄Gcd̄ +Gad̄Gcb̄ − CacmC
m
b̄d̄. (4.59)

The above conditions mean that M, together with the bundle L, is a special Kähler manifold
[19].
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4.2 Coordinates and prepotential

So far we have considered a generic parametrization of the moduli space of complex coordinates.
In order to make further progress we need an explicit parametrization of the moduli space. This
is done by introducing the periods of Ω. We choose a symplectic basis for H3(X,C)

(αI , β
I), I = 0, 1, · · · , h2,1(X), (4.60)

satisfying ∫
X
αI ∧ βJ = δJI ,

∫
X
βJ ∧ αI = −δJI . (4.61)

Similarly, we define Poincaré duals AI , BI satisfying∫
AI

αJ = δIJ ,

∫
BI

βJ = −δJI , (4.62)

and zero otherwise. We then define the periods of the 3-form Ω as

XI =

∫
AI

Ω, FI =

∫
BI

Ω. (4.63)

Notice that, if we decompose Ω in terms of the basis (4.60), we find

Ω = XIαI −FIβI . (4.64)

In the next Chapter we will introduce explicit expressions for XI , FI in terms of Frobenius
solutions of a differential equation, called the Picard–Fuchs equation. With our choice of nor-
malization, these periods are not integral. Therefore, they correspond to a basis of three-cycles
over C rather than Z. However, they can be easily modified to obtain integral periods.

It follows from the theory of deformation of complex structures that the XI are (locally)
complex projective coordinates for M. They are called special projective coordinates. Since
the XI parametrize M we deduce that the other set of periods must depend on them, i.e.
FI = FI(X). We now define the projective prepotential F(XI) as

F(XI) =
1

2
XIFI . (4.65)

One has the following equality

FI =
∂F
∂XI

. (4.66)

It follows that the projective prepotential is homogeneous of degree 2. To see this, notice that
(4.16) implies ∫

X
Ω ∧ ∂Ω

∂XI
= 0, I = 0, · · · , h2,1(X). (4.67)

By plugging the expansion (4.64) here we find

FI = XJ ∂FJ
∂XI

=
∂

∂XI
(XJFJ)−FI (4.68)

and (4.66) follows. We can use again the expansion (4.64) to obtain an expression for the Kähler
potential in terms of projective coordinates,

K(X,X) = − log
[
i(X

IFI −XIFI)
]

= − log
(
2 Im (XIFI)

)
. (4.69)
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Let us collect some useful results. The second derivative

τIJ = FIJ (4.70)

is homogeneous of degree zero, therefore

XMCMIJ = 0. (4.71)

Equivalently, one has

τIJ =
∂2F

∂XI∂XJ
=

∂2

∂XI∂XJ

(
1

2
XMFM

)
= τIJ +

1

2
XMCMIJ . (4.72)

We can now relate the Yukawa coupling to the prepotential. First, we notice that∫
X

Ω ∧ ∂3Ω

∂XI∂XJ∂XK
= −XM ∂3FM

∂XI∂XJ∂XK
. (4.73)

On the other hand, the triple derivative

CIJK =
∂3F

∂XI∂XJ∂XK
(4.74)

is homogeneous of degree −1, therefore

XMFIJKM = −CIJK . (4.75)

Equivalently, we have the identity

∂3(XMFM )

∂XI∂XJ∂XK
= 3

∂3F
∂XI∂XJ∂XK

+XM ∂3FM
∂XI∂XJ∂XK

, (4.76)

and we conclude that ∫
X

Ω ∧ ∂3Ω

∂XI∂XJ∂XK
= CIJK , (4.77)

which is the Yukawa coupling in the projective coordinates. We can relate it to the conventional
Yukawa coupling (4.19) as follows. By using the decomposition (4.64) in (4.19), we find

Cabc = FI∂abcXI −XI∂abcFI . (4.78)

Let us calculate ∂abcFI . The triple derivative ∂abcFI will lead to second, third, and fourth
derivatives of F :

∂abcFI = FIJKM∂aXJ∂bX
K∂cX

M + FIJ∂3
abcX

J

+ FIJK∂2
abX

J∂cX
K + FIJK∂2

acX
J∂bX

K + FIJK∂2
bcX

J∂aX
K .

(4.79)

After contraction with XI , all terms in the last line vanish due to (4.71), and we find

Cabc = −XIFIJKM∂aXJ∂bX
K∂cX

M −XIFIJ∂3
abcX

J + FI∂3
abcX

I . (4.80)

By using (4.75) and (4.68), we conclude that

Cabc = ∂aX
I∂bX

J∂cX
KCIJK . (4.81)
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This formula is valid in arbitrary complex coordinates z for the moduli space.
The XI are projective coordinates for the moduli space, and we have h2,1(X) + 1 of them.

We can obtain h2,1(X) coordinates for X by introducing the affine coordinates corresponding
to the projective coordinates XI . This is done by choosing a nonzero coordinate, say X0, and
considering the quotients

ti =
Xi

X0
, i = 1, · · · , h2,1(X). (4.82)

Since the projective prepotential is homogeneous, we can define a quantity F0(ta) called simply
the prepotential which only depends on the coordinates ta

F(XI) = (X0)2F0(ti). (4.83)

The prepotential in affine coordinates can be obtained by normalizing Ω in such a way that the
0-th period X0 is set to 1, i.e. we have to set Ω→ Ω/X0.

It will be convenient to divide the periods in four different sets, leading to a period vector Π
in projective coordinates:

Π = (X0, Xi,Fi,F0), i = 1, · · · , h2,1(X). (4.84)

We have the following equalities

F0 =X0(2F0 − ti∂iF0),

Fi =X0∂iF0, i = 1, · · · , h2,1(X),
(4.85)

We also have the useful equations:

τ00 = 2F0(ti)− 2ti∂iF0 + titj∂2
ijF0,

τ0i = ∂iF0 − tj∂2
ijF0,

τij = ∂2
ijF0,

(4.86)

as well as

C000 = − 1

X0
titjtk∂3

ijkF0,

C00i =
1

X0
tjtk∂3

ijkF0,

C0ij = − 1

X0
tk∂3

ijkF0,

Cijk =
1

X0
∂3
ijkF0.

(4.87)

The equation for the Kähler potential can be written now as

e−K = iΠ†VΠ, (4.88)

where V is the matrix 
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 . (4.89)
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In terms of the homogeneous coordinates ta, we have

Π†VΠ = −X0X
0
(

(ti − ti)(Fi + F i) + 2F 0 − 2F0

)
, (4.90)

where we have used (4.85).

Example 4.2. The simplest example of special geometry is probably the one coming from the
prepotential

F0(t, S) =
1

2
Cabt

atbS, a, b = 1, · · · , n, (4.91)

with n + 1 moduli. Here, Cab is an invertible, symmetric matrix. For n = 10 this is the
prepotential of the Enriques Calabi–Yau manifold. The only nonzero Yukawa coupling is

CabS = Cab. (4.92)

The Kähler potential is

e−K = (S + S̄)Y, Y =
1

2
Cab(t

a + t̄a)(tb + t̄b). (4.93)

The Kähler metric has components

GSS̄ =
1

(S + S̄)2
, Gab̄ = −Cab

Y
+
∂aY ∂b̄Y

Y 2
. (4.94)

The inverse metric is easy to compute,

GSS̄ = (S + S̄)2, Gab̄ = Y 2(C−1)acGcd̄(C
−1

)d̄b̄. (4.95)

We will denote by G the matrix Gab̄ in the fiber directions. We have the useful equality

C−1GC−1G =
110

Y 2
. (4.96)

The Christoffel symbols can be also evaluated. We have,

ΓSSS = − 2

S + S̄
,

Γcab =
(td + t̄d)

Y
(δcdCab − δcbCad − δcaCbd).

(4.97)

We can check that DiCjkl = 0. For example, for i = c, j = a, k = b, c = S, this is

− ΓdcaCdb − ΓdcbCad + 2∂cKCab, (4.98)

but since

ΓdcaCdb + ΓdcbCad = 2Cab
∂cY

Y
, (4.99)

the above vanishes.
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4.3 The big moduli space

We can use the projective coordinates XI to define a “big” moduli space, M̂, of dimension
h2,1(X) + 1. This space is also Kähler. Its Kähler potential is

K =
i

2
(XKFK −X

KFK), (4.100)

which leads to the Kähler metric

GIJ = ∂I∂JK = − i

2
(τ − τ)IJ = Im τIJ . (4.101)

We will need some properties of the metric of the big moduli space, and in particular its
relation to the metric of the “small” moduli space. We first note that, from (4.68) and (4.69),
we have

e−K = i(X
I
XKτKI −XIX

K
τKI) = iXI(τ − τ)IJX

J
, (4.102)

which we will write as

i eKXI(τ − τ)IJX
J

= 1. (4.103)

At this point we introduce an important set of quantities. We first introduce a Greek index
α = (0, a), where a are indices for the usual complex coordinates of the “small” moduli space.
Then, following [14, 20] we define

χIα = DαX
I , α, I = 0, 1, · · · , h2,1(X), (4.104)

with the proviso that

D0X
I = XI , (4.105)

and we recall that

DaX
I = (∂a +Ka)X

I . (4.106)

We also note that

χIa =

∫
αI

χa, (4.107)

where χa are the forms introduced in (4.12). The matrix χIα is invertible, and its inverse will be
denoted by χαI , satisfying

χIαχ
α
J = δIJ , χIαχ

β
I = δβα. (4.108)

Let us now take an anti-holomorphic derivative w.r.t. zb in (4.103). We find,

Db̄

(
eKXI(τ − τ)IJX

J
)

= −eK∂b̄τ IJX
IX

J
+eKXI(τ−τ)IJDb̄X

J
= eKXI(τ−τ)IJχ

J
b̄ , (4.109)

where we used that CIJKX
K

= 0. We conclude that

XI(τ − τ)IJχ
J
b̄ = 0. (4.110)

Let us now apply the holomorphic derivative Da to this equation. We find,

∂aτIJX
IχJb̄ +(τ−τ)IJχ

I
aχ

J
b̄ +XI(τ−τ)IJDaχ

J
b̄ = (τ−τ)IJχ

I
aχ

J
b̄ +XI(τ−τ)IJGab̄X

J
= 0, (4.111)
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where we used (4.71) and the third equation in (4.52) (we note that τIJ has charges (0, 0), and
it is a scalar from the point of view of the moduli space M, so that DaτIJ = ∂aτIJ). If we use
now (4.103) in the last term, we conclude that

Gab̄ = −ieK(τ − τ)IJχ
I
aχ

J
b̄ . (4.112)

This will be very useful in the following. It also gives the equation,

(τ − τ)IJ = i e−KGab̄χ
a
Iχ

b̄
J . (4.113)

Remark 4.3. The signs here are different to the ones in [14, 20], which can be traced back to
the fact that our prepotential has the opposite sign to the one used in [14].

The above results suggest to define a (h2,1(X)+1)×(h2,1(X)+1) matrix giving an “extended”
metric:

Gαβ̄ = −ieK(τ − τ)IJχ
I
αχ

J
β̄ . (4.114)

In matrix form, the above results lead to

Gαβ̄ =

(
−1 0
0 Gab̄

)
. (4.115)

4.4 Symplectic transformations

An important aspect of the formulation in the big moduli space is that there is an action of the
symplectic group Sp(2n), where n = h2,1(X)+1. An element Γ ∈ Sp(2n) is an invertible 2n×2n
matrix that satisfies

ΓTΩΓ = Ω, Ω =

(
0 1n
−1n 0

)
. (4.116)

If we write it as

Γ =

(
A B
C D

)
(4.117)

then the condition (4.116) implies that the n× n matrices A, B, C, D satisfy

ATD − CTB = 1n, ATC = CTA, BTD = DTB. (4.118)

We deduce that the matrix

Γ−1 =

(
DT −BT

−CT AT

)
(4.119)

satisfies

Γ−1Γ = 12n, (4.120)

therefore it must be the inverse of Γ, since Γ is invertible. By calculating now

ΓΓ−1 =

(
ADT −BCT BAT −ABT

CDT −DCT DAT − CBT

)
(4.121)

we deduce additional conditions satisfies by a symplectic matrix,

ADT −BCT = 1n, ABT = BAT , CDT = DCT . (4.122)
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A symplectic transformation Γ acts on the periods as

XJ
Γ = CJIFI +DJ

IX
I ,

FΓ
J = A I

J FI +BJIX
I .

(4.123)

It follows that τIJ transforms as

τΓ = (Aτ +B)(Cτ +D)−1. (4.124)

It will be important later to note that (τ − τ̄)−1 transforms with a shift:[
(τ − τ̄)−1Γ

]IJ
= (Cτ +D)I K (Cτ +D)J L

[
(τ − τ̄)−1Γ

]KL − CIK (Cτ +D)J K . (4.125)

We also note that the χJα transform as

χJΓ
α =

(
CJKτKI +DJ

I

)
χIα, (4.126)

and the inverse as

χαΓ
J = (Cτ +D)−1K

J χ
α
K . (4.127)

4.5 The holomorphic limit of special geometry

In order to make contact with the A-model, we have to consider in detail the holomorphic limit
of special geometry, as explained in [15]. We will assume that we are in the large radius frame,
and ti are flat coordinates (4.82) appropriate for this frame. The holomorphic limit is defined as
the limit in which t̄i →∞ while keeping ti fixed. Formally we can take

t
i → st

i
, s→∞. (4.128)

In order to work out this, we have to be more explicit about the structure of the prepotential in
the coordinates appropriate for the large radius frame and limit. It has the form

F0(ti) = −1

6
dijkt

itjtk + bit
i +

c

2
+ F inst

0 (ti). (4.129)

Here, dijk, bi and c are real coefficients with a topological meaning:

dijk =

∫
X
Ji ∧ Jj ∧ Jk, bi = −(2π)2

∫
X
c2(X) ∧ Ji, c = −ζ(3)χ. (4.130)

In the holomorphic limit, the instanton part of the conjugate prepotential is exponentially sup-
pressed, and the conjugate period vector is given by

Π† ≈ X0
(

1, st
i
,−s

2

2
dijkt

j
t
k

+ bi,
1

6
s3dijkt

i
t
j
t
k

+ sbit
i
+ c

)
. (4.131)

In this and the following equations the approximate symbol ≈ means that the r.h.s. agrees with
the l.h.s. up to exponentially small corrections O(e−s). Therefore, we can write

e−K ≈ |X0|2
3∑
r=0

srCr, (4.132)
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where

C3 = −1

6
dijkt

i
t
j
t
k
, C2 =

1

2
dijkt

it
j
t
k
. (4.133)

It is easy to see that the terms C0,1 will give contributions which vanish in the holomorphic limit.
We can then write

K ≈ − logX0 − logX
0 − log

(
s2M

)
(4.134)

where

M =
s

6
dijkt

i
t
j
t
k − 1

2
dijkt

it
j
t
k

+O(s−1). (4.135)

We note that1

∂aM = −1

2
dijk∂at

it
j
t
k

+O(s−1),

∂b̄M =
s

2
dijk∂b̄t

i
t
j
t
k − dijkti∂b̄t

j
t
k

+O(s−1),

∂2
ab̄M = −dijk∂ati∂b̄t

j
t
k

+O(s−1).

(4.136)

A first consequence of these results is that

Ka ≈ −∂a logX0 − 1

M
∂aM = −∂a logX0 +O(s−1). (4.137)

Therefore, in the holomorphic limit we set

Ka → −
1

X0
∂aX

0. (4.138)

Let us now work out the Kähler metric. We have

Gab̄ = ∂2
ab̄K ≈

1

M2
∂aM∂b̄M −

1

M
∂2
ab̄M. (4.139)

An explicit evaluation produces the expression

Gab̄ =
1

s
J iaLijJ

j

b̄ +O(s−2) (4.140)

where

J ia =
∂ti

∂za
, Lij = − ∂2

∂t
i
∂t
j

logm, (4.141)

and

m =
1

6
dijkt

i
t
j
t
k

(4.142)

The most important point here is that the matrix Lij is purely antiholomorphic. It follows in
particular that

log detGab ≈ log det(∂at
i) + antiholomorphic +O(s−1). (4.143)

We also note that the inverse metric is given by

Gab̄ ≈ s
(
J
−1
)b̄
i

(
L−1

)ij (
J−1

)a
j

+O(s0). (4.144)

1To make things clearer, we have used Latin indices at the beginning of the alphabet a, b, · · · to label arbitrary
complex coordinates za, while Latin indices from the middle of the alphabet i, j, · · · refer to flat coordinates ti.
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Let us now determine the holomorphic limit of the Christoffel symbols:

Γcab = Gcd̄∂aGd̄b ≈
(
J
−1
)d̄
i

(
L−1

)ik (
J−1

)c
k
∂aJ

p
bLpqJ

q

d̄ +O(s−1). (4.145)

Therefore, in the holomorphic limit we have

Γcab →
∂zc

∂tp
∂2tp

∂za∂zb
. (4.146)

It also follows from this formula that, in the holomorphic limit, the Christoffel symbol vanishes in
flat coordinates. Indeed, we can use the standard formula for the transformation of the Christoffel
symbols under a change of coordinates,

Γijk =
∂za

∂tj
∂zb

∂tk

(
∂ti

∂zc
Γcab −

∂2ti

∂za∂zb

)
, (4.147)

which vanishes after plugging in the expression (4.146).
One can consider the holomorphic limit of the various quantities appearing in special geom-

etry. Of special relevance is the matrix χIα defined in (4.104), and its inverse. In the holomorphic
limit, by using (4.138), we find

χ I
α,h = X0

(
1 ta

0 ∂kt
a

)
, (4.148)

i.e.

χ 0
0,h = X0, χ a

0,h = X0ta, χ 0
a,h = 0, χ a

k,h = X0 ∂t
a

∂zk
. (4.149)

Then, the inverse matrix is given by

χ α
I,h = X0

(
1 −tb ∂zl

∂tb

0 ∂zl

∂tb

)
(4.150)

i.e. its entries are given by

χ 0
0,h =

1

X0
, χ l

0,h = − 1

X0
tb
∂zl

∂tb
, χ 0

a,h = 0, χ l
a,h =

1

X0

∂zl

∂ta
. (4.151)

4.6 Propagators

As we will see, the genus g free energies of BCOV are written as polynomials in a set of generators
called propagators. We give here a thorough description of the propagators, building on [14, 15,
20, 21].

We define Sab through the equation

∂c̄S
ab = C

ab
c̄ , (4.152)

where the object in the r.h.s. was defined in (4.58). In addition to Sab, defined in (4.152), we
introduce as well

∂c̄S
b = Gac̄S

ab, ∂c̄S = Gac̄S
a. (4.153)

We will gather the propagators in a matrix of the form(
S00 S0a

Sa0 Sab

)
=

(
2S −Sa
−Sa Sab

)
. (4.154)

– 41 –



Due to the importance of propagators, it is crucial to have explicit expressions for them. We
note that (4.152) and (4.153) define them only up to the addition of a holomorphic function.
In the case of Sab, an explicit expression can be obtained by using (4.57). Indeed, by using the
holomorphy of Cabc and the definition of the propagator, we can write (4.57) as

∂b̄Γ
r
ac = δrc∂b̄Ka + δra∂b̄Kc − ∂b̄ (CacpS

rp) , (4.155)

which can be integrated immediately to

Γrac = δrcKa + δraKc − CacpSrp + srac, (4.156)

where srac are holomorphic. One can proceed in this way and obtain explicit results for the
propagators, up to holomorphic ambiguities. However, it turns out to be more useful to find
explicit expressions for them by working in the big moduli space, as first pointed out in [20] and
further developed in [14].

Let us then define the non-holomorphic propagators as

Sαβ = −χαI (τ − τ̄)−1IJχβJ , (4.157)

which we can write as
Sαβ = GαᾱGββ̄Sᾱβ̄, (4.158)

where
Sᾱβ̄ = e2K(τ − τ̄)IJ χ̄

I
αχ̄

J
β̄ . (4.159)

We will now show that the non-holomorphic propagators introduced above satisfy the defining
properties (4.152) and (4.153). We first calculate

∂āS =
1

2
Dā

(
e2K(τ − τ̄)IJX

I
X
J
)

= −1

2
e2KDāτ̄IJX

I
X
J

+ e2K(τ − τ̄)IJX
I
χ̄Jā

= S0̄ā,

(4.160)

since
Dāτ̄IJX

I
X
J

= CIJKX
I
X
J
χ̄Kā = 0 (4.161)

due to (4.71). We also note that

S0̄ā = G00̄GābS
0b = GābS

b, (4.162)

which is the second equation in (4.153). We now calculate

DāS0̄b̄ = Dā

(
e2K(τ − τ)IJ χ̄

I
b̄X

J
)

= e2K(τ − τ)IJ

(
Dāχ̄

I
b̄X

J
+ χ̄Ib̄ χ̄

J
ā

)
. (4.163)

We note that, by using the conjugate of the third equation in (4.52), we find

(τ − τ)IJDāχ̄
I
b̄X

J ∝ C c
āb̄ χ

I
c(τ − τ)IJX

J
= 0 (4.164)

due to the complex conjugate of (4.110). Therefore,

DāS0̄b̄ = Sāb̄. (4.165)

We now evaluate
∂āS

b = ∂ā

(
Gbc̄S0̄c̄

)
= Gbc̄DāS0̄c̄ = Gbc̄Sāc̄ = GācS

cb, (4.166)
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which is the first equation in (4.153).
We can now verify (4.152). We start with

Dc̄Sāb̄ = Dc̄

(
e2K(τ − τ)IJ χ̄

I
āχ̄

J
b̄

)
= −e2KCIJK χ̄

I
āχ̄

J
b̄ χ̄

K
c̄ − 2e2K(τ − τ)IJDc̄χ̄

I
āχ̄

J
b̄ . (4.167)

By using the conjugate of the third equation in (4.52), we find

−2e2K(τ − τ)IJDc̄χ̄
I
āχ̄

J
b̄ = −2e2K(τ − τ)IJ ieKC c̄ām̄G

m̄lχIl χ̄
J
b̄ = 2e2KGlb̄C c̄ām̄G

m̄l

= 2e2KC c̄āb̄,
(4.168)

where we used (4.112). We now note that (4.81) can be written as

Cabc = CIJKχ
I
aχ

J
b χ

K
c . (4.169)

This is because the difference between (4.81) and (4.169) involves terms of the form CIJKX
K = 0

due to (4.71). We conclude that
Dc̄Sāb̄ = e2KCāb̄c̄. (4.170)

From this it follows that
∂c̄S

ab = e2KGaāGb̄Cāb̄c̄. (4.171)

This is precisely the condition (4.152).
One of the most important properties of the propagators defined by (4.157) is that they form

a closed ring upon taking (covariant) derivatives, and we have the following formulae:

DaS
bc = δbaS

c + δcaS
b − CadeSdbSec,

DaS
b = 2δbaS− CadeSdSeb,

DaS = −1

2
CabcS

bSc,

DiKj = −KiKj − CijkSk + CijkS
klKl + gij ,

(4.172)

where gij is a holomorphic function.
Let us first establish the first three equations. To do this, we need some preliminary results.

From (4.114) we obtain
ieK χ̄Jβ̄ = −Gαβ̄(τ − τ̄)−1JKχαK . (4.173)

We can now combine this equation with the third one in (4.52) to obtain

Drχ
I
s = −C q̄

rs Gq̄m(τ − τ̄)−1IKχmK = −Crsm(τ − τ̄)−1IKχmK

= CrsmS
mnχIn.

(4.174)

We can now use this result to calculate Diχ
α
I . By taking derivatives in χαI χ

J
α = δJI , we have

χJαDiχ
α
I = −χαIDiχ

J
α = −χmI Diχ

J
m − χJi χ0

I = −CirmSmnχJnχrI − χJi χ0
I . (4.175)

We conclude that
Diχ

β
I = −CirmSmβχrI − δ

β
i χ

0
I . (4.176)

Let us now write the propagator (4.157) as

Sαβ = −ieKGIJχαI χ
β
J , (4.177)
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where

GKL = ieK(τ − τ̄)KL, GKL = −ie−K(τ − τ̄)−1KL, (4.178)

are, up to an overall factor, the Kähler metric (4.101) and its inverse. We easily calculate

DaGKL = ieKDaτKL = ieKCKLMχ
M
a = ieKCabcχ

b
Kχ

c
L. (4.179)

For the inverse one finds,

DaG
LM = ie−KCabc(τ − τ̄)−1LIχbI(τ − τ̄)−1MJχcJ . (4.180)

We now have all the ingredients to calculate the covariant derivative of the propagator. We find,

DcS
αβ = −ieKDcG

IJχαI χ
β
J − ieKGIJDcχ

α
I χ

β
J − ieKGIJDcχ

β
Iχ

α
J , (4.181)

i.e. the last term is obtained from the second one by exchanging α and β. By using the results
above, we obtain

DcS
αβ = CcpqS

αpSβq + ieKGIJCcrmS
mαχrIχ

β
J + ieKGIJδαj χ

0
Iχ

β
J + (α↔ β)

= −CcpqSαpSβq − δαj S0β − δβj S
0α.

(4.182)

This gives the first three equations of (4.172), as we consider the different possibilities for the
indices.

We want to show now that

DiKj = −KiKj − CijkSk + CijkS
klKl + gij . (4.183)

We first need the result:

∂k̄χ
a
I = 0, a 6= 0, (4.184)

in other wordds, χaI is holomorphic. In particular, it can be evaluated by (4.151). In addition,
we have

∂k̄χ
0
I = −∂k̄ (Kmχ

m
I ) . (4.185)

The holomorphic property (4.184) is easily proved by using (4.108):

∂k̄χ
α
I = −χβIχ

α
J∂k̄χ

J
β = −χβIχ

α
J∂k̄Kβχ

J
0 = −χβIχ

α
JGk̄βχ

J
0 = −χβIGk̄βδ

α
0 , (4.186)

where we set K0 = 0. This vanishes if α = i, and for α = 0 it gives

∂k̄χ
0
I = −χβIGk̄β = −χβI ∂k̄Kβ = −∂k̄

(
−χβIKβ

)
= −∂k̄ (−χmI Km) . (4.187)

From the second equality in (4.184) we deduce that

χ0
I = −χmI Km + hI , (4.188)

where hI is a holomorphic function.
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Example 4.4. One can use the results (4.151) to write an explicit formula for hI , in terms of
periods and their derivatives. Since hI is holomorphic, in the definition (4.188) we can evaluate
χαI in the holomorphic limit, and we find

h0 =
1

X0
+

tb

(X0)2

∂X0

∂zm
∂zm

∂tb
,

ha = − 1

(X0)2

∂X0

∂zm
∂zm

∂ta
,

(4.189)

where summation over repeated indices is understood. An alternative expression can be found
in the one modulus case. We have

χ I
α =

(
X0 X1

DzX
0 DzX

1

)
, χ α

I =
1

W

(
DzX

1 −X1

DzX
0 X0

)
, (4.190)

where
W = X0(X1)′ − (X0)′X1, (4.191)

and the ′ denotes derivative w.r.t. z. We deduce that

χ z
0 = −X

1

W
, χ z

1 =
X0

W
, (4.192)

which are holomorphic as required by (4.184). Let us also note that, in terms of t = X1/X0, we
have

χ z
0 = − t

X0

∂z

∂t
, χ z

1 =
1

X0

∂z

∂t
, (4.193)

in agreement with the result in (4.151). We also find that

h =
1

W

(
(X1)′

−(X0)′

)
, (4.194)

which can be seen to agree with the general expression (4.189).

Let us now prove (4.183). The starting point is (4.103). By taking a derivative we obtain

− e−KKj = iX
I
∂jX

K(τ − τ̄)IK , (4.195)

where we used (4.71). Taking a second derivative gives

e−K (−∂iKj +KiKj) = i∂2
ijX

I(τ − τ̄)IJX
J

+ i∂iX
K∂jX

LCIKLX
I
. (4.196)

On the other hand, by definition of Sm, we have

CijmS
m = Cijmχ

m
I (τ − τ̄)−1IJχ0

J = ieKCijmχ
m
I χ̄

I
0̄

= ieKCijmχ
m
I X

I
,

(4.197)

where we used the definition of Sm and (4.173). By using now (4.169), we get

CijmS
m = ieK CPQRχ

P
i χ

Q
j χ

R
mχ

m
J X

J
= ieK CPQRχ

P
i χ

Q
j

(
δRJ − χR0 χ0

J

)
X
J

= ieK CPQJχ
P
i χ

Q
j X

J
= ieK CPQJ∂iX

P∂jX
QX

J
(4.198)
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where we use (4.71) repeteadly. This is essentially the last term in (4.196). To reconstruct the
first term, we use (4.113) to write

i∂2
ijX

I(τ − τ̄)IJX
J

= −e−K∂2
ijX

IX
J
Gαβ̄χ

α
I χ̄

β̄
J = −e−K∂2

ijX
IGαβ̄χ̄

J
0 χ̄

β̄
Jχ

α
I

= −e−K∂2
ijX

IGα0̄χ
α
I = e−K∂2

ijX
Iχ0

I

(4.199)

We now go back to (4.196) with all these results. We find

e−K (−∂iKj +KiKj) = e−KCijmS
m + e−K∂2

ijX
Iχ0

I . (4.200)

If we use (4.188) we can write

∂iKj −KiKj = −CijmSm − ∂2
ijX

I (−χmI Km + hI)

= −CijmSm + ∂2
ijX

IχmI Km − ∂2
ijX

IhI

= −CijmSm + fmij Km + gij

(4.201)

where
fmij = ∂2

ijX
IχmI , gij = −∂2

ijX
IhI (4.202)

are holomorphic. We note that these quantities enter into the holomorphic derivatives of χmI , hI ,
and one finds after some work,

∂iχ
k
I = −δki hI − fkimχmI , ∂ihI = gimχ

m
J . (4.203)

We now can rederive from this a more precise version of (4.156). To do this, we consider

∂iKj −KiKj = −CijmSm + fmij Km + gij (4.204)

and take a derivative w.r.t. z̄m̄. By using the first equation in (4.152), we obtain

∂iGjm̄ −Gim̄Kj −Gjm̄Ki = −CijlGm̄bSbl + fkijGm̄k. (4.205)

After multiplying it by Gam̄, we get

Γaij = δaiKj + δajKi − CijlSal + faij . (4.206)

This gives a concrete realization of (4.156) with an explicit expression for the propagators and
also for saij . To derive now (4.183), we just have to recall that

DiKj = ∂iKj − ΓkijKk (4.207)

and use (4.204) and (4.206).
The non-holomorphic propagators we have introduced in (4.157) are not invariant under sym-

plectic transformations. Their transformation rule can be deduced from the definition, together
with (4.125) and (4.127). One easily finds,

SαβΓ = Sαβ + χαK
[
(Cτ +D)−1C

]KJ
χβJ . (4.208)

We note that the matrix (Cτ +D)−1C is symmetric. Indeed, this is equivalent to

C(Cτ +D)T = (Cτ +D)CT , (4.209)
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which follows from the symmetry of τ and the last condition in (4.122).

We now want to construct invariant propagators by adding an additional piece to the non-
holomorphic propagators. More precisely, we define the full propagators

Sαβ = Sαβ + ∆Sαβ (4.210)

in such a way that

SαβΓ = Sαβ. (4.211)

Let us now implement these conditions to obtain additional information on ∆Sαβ. We will
start with Sjk. In this case, the additional piece ∆Sjk is purely holomorphic, and we write

∆Sjk = Sjk (4.212)

which gives the holomorphic limit of the propagator Sjk. We want to preserve the condition
(4.156). By taking into account (4.206), we find that

Γkij = δkiKj + δkjKi − CijlSlk − CijlS lk + skij , (4.213)

where

skij = fkij + CijkS lk. (4.214)

A typical choice is that skij are rational functions of the moduli zα, therefore invariant under

symplectic transformations by construction. By using the explicit expression for the fkij in (4.202)
we deduce the following constraint on the holomorphic part of the propagators:

CijlS lk = skij − ∂2
ijX

IχkI . (4.215)

Remark 4.5. By considering the holomorphic limit of (4.206), we find as well

Γkij,h = δkiKj,h + δkjKi,h − CijlS lk + skij , (4.216)

where the holomorphic limits of the Christoffel symbol and the derivative of the Kähler potential
are given by (4.146) and (4.138), respectively. For this equation to be compatible with (4.215),
we must have the following relation:

Γkij,h − δkiKj,h − δkjKi,h = ∂2
ijX

IχkI . (4.217)

This is easily checked by taking into account (4.151).

Let us now consider the additional pieces that have to be added to the other propagators.
Their structure is determined by requiring that the relations (4.153) still hold. This leads to

Sk = Sk + SklKl + Sk,

S = S +
1

2
SklKkKl + SkKk + S,

(4.218)

where Sk, S are holomorphic. Indeed, one has

∂āS
k = ∂āS

k + Skl∂āKl = GālS
kl +GālSkl = GālS

kl. (4.219)
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Similarly,

∂āS = ∂āS + SklGālKk +GākSk = Gāl

(
Sl + S lkKk + S l

)
= GālS

l. (4.220)

We can now obtain a constraint for Sk by requiring that (4.204) holds with invariant versions of
fmij , gij :

∂iKj −KiKj = −CijkSk + smijKm + hij . (4.221)

By plugging the above equation for Sk we obtain that indeed (4.221) holds with

hij = gij + CijkSk. (4.222)

Equivalently, we have

CijkSk − hij = hI∂
2
ijX

I . (4.223)

The holomorphic propagators Sαβ play a crucial role, and in particular we will need their
transformations under the action of the symplectic group. These follow from their definition, the
transformation rule (4.208), and the invariance of the full propagator (4.211). One finds that the
holomorphic propagators transform as follows under a symplectic transformation:

SklΓ = Skl − [(Cτ +D)−1C]IJχkIχ
l
J ,

SkΓ = Sk + [(Cτ +D)−1C]IJχkIhJ ,

SΓ = S − 1

2
[(Cτ +D)−1C]IJhIhJ .

(4.224)

The first line follows simply from the fact that Sjk = Sjk + Sjk, so the transformation rule of
Sjk is just the opposite of Sjk. To obtain the second line we note that

Sk → Sk − [(Cτ +D)−1C]IJχ0
Jχ

k
I , (4.225)

and

SklKl → SklKl − [(Cτ +D)−1C]IJχlJKlχ
k
I , (4.226)

therefore invariance of Sk requires

Sk → Sk + [(Cτ +D)−1C]IJχkI (χ
0
J + χlJKl) = Sk + [(Cτ +D)−1C]IJχkIhJ , (4.227)

where we used the definition of hJ in (4.188). Similarly, for S we find that the total shift of the
first three terms in the definition of S, in the second line of (4.218), involve the combination

1

2
χ0
Iχ

0
J −

1

2
χkIχ

l
JKkKl + χkIKkhJ =

1

2
hIhJ (4.228)

where the first term appears in the shift of S, the second one in the shift of SklKkKl/2, and the
third one in the shift of SkKk.

As a consistency check, let us note that the transformation rules for Sjk, Sk are compatible
with the expressions (4.215), (4.223). Under a symplectic transformation, fkij transforms as

fkΓ
ij = fkij +

[
(Cτ +D)−1C

]PJ
CJLKχ

L
i χ

K
j χ

k
P , (4.229)
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One the other hand, from (4.224) we find

CijlS lk → CijlS lk − CijlχlI
[
(Cτ +D)−1C

]IJ
χkJ

= CijlS lk − CPQIχPi χ
Q
j χ

k
J

[
(Cτ +D)−1C

]IJ
,

(4.230)

where we used (4.169). The second term in the second line is minus the shift due to fkij . A similar

argument can be applied to Sk.
At this point it is useful to introduce the shifted propagators [21]:

S̃ij = Sij ,

S̃i = Si − SijKj ,

S̃ = S − SiKi +
1

2
SijKiKj .

(4.231)

In terms of the non-holomorphic propagators Sαβ and the holomorphic functions Sαβ, we find

S̃i = Si − SijKj + Si,

S̃ = S− SiKi +
1

2
SijKiKj + S.

(4.232)

From their expression it is easy to see that the non-holomorphic propagators Sαβ vanish in the
holomorphic limit τ̄ →∞. Therefore,

Sαβ = S̃αβ (4.233)

give the holomorphic limit of the tilded propagators. We can then write,

S̃αβ = S̃αβ + S̃αβ, (4.234)

where
S̃ij = Sij ,

S̃i = Si − SijKj ,

S̃ = S− SiKi +
1

2
SijKiKj .

(4.235)

We can now use (4.172) to obtain formulae for the covariant derivatives of the invariant
propagators. One obtains,

DiS
jk = δjiS

k + δki S
j − CimnSmjSnk + hjki ,

DiS
j = 2δjiS − CimnS

mSnj + hjki Kk + hji ,

DiS = −1

2
CimnS

mSn +
1

2
hmni KmKn + hjiKj + hi,

(4.236)

where hjki , h
j
i , hi are holomorphic functions. They are explicitly given as follows:

hkli = Dfi S
kl − δki S l − δliSk + CimnSmkSnl,

hki = Dfi S
k − 2δki S + himSmk,

hi = ∂iS −
1

2
CimnSmSn + hinSn.

(4.237)
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In these equations, we have denoted
Dfi = ∂i + f∗i∗ (4.238)

i.e. a (covariant) derivative where fkij is treated as a connection2. In addition, one has

DiKj = −KiKj − CijkSk + CijkS
klKl + hij . (4.239)

From these equations one obtains the following ones, involving the conventional derivatives of
the tilded propagators:

∂iS
jk = CimnS

mjSnk + δji S̃
k + δki S̃

j − sjimS
mk − skimSmj + hjki ,

∂iS̃
j = CimnS

mjSn + 2δji S̃ − s
j
imS̃

m − hikSkj + hji ,

∂iS̃ =
1

2
CimnS̃

mS̃n − hijS̃j + hi,

∂iKj = KiKj − CijnSmnKm + smijKm − CijkS̃k + hij .

(4.240)

The first three equations in (4.240) can be used to check (4.237). Indeed, remember that Sαβ
are the holomorphic limits of the tilded propagators. Therefore, the holomorphic limit of the
first three equations in (4.240) must reproduce the equations in (4.237). For S the agreement is
immediate. For the other two propagators, we have to use (4.214).

As a final check of the formalism, we can show that the second equation in (4.237), when
combined with the first two equations of (4.224), leads to the transformation rule for S. Let us
abbreviate M = (Cτ +D)−1C. Then,

∂iM
IJ = −M IPCPQRM

QJχRi . (4.241)

It follows that

∂iSkΓ = ∂iSk −M IPCPQRM
QJχRi χ

k
IhJ +MIJ

(
hJ∂iχ

k
I + χkI∂ihJ

)
. (4.242)

The other ingredients we need are

fkΓ
ij SjΓ = fkijSjΓ +M IJCJLRχ

L
i χ

R
j χ

k
ISj + fkijM

IJχjIhJ +M IPCPQRM
QJχRi χ

k
IhJ , (4.243)

where we simplified the last term by using (4.71), and

himSmkΓ = himSmk −M IJhimχ
i
Iχ

m
J . (4.244)

By using (4.81), we write (4.223) as

CIPRχ
I
iχ

R
j Sj = χmI (him − gim). (4.245)

Therefore, the second term in the r.h.s. of (4.243) combines with the second term in the r.h.s.
of (4.244) and we get at the end

2δki (SΓ − S) = M IJ
(
hJ∂iχ

k
I + χkI∂ihJ + fkijχ

j
IhJ − χ

m
I χ

k
Jgim

)
= −M IJhIhJδ

k
i , (4.246)

after using (4.203).

2The second and third equations in (4.237), as well as (4.239), are stated erroneously in [14].
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We note that the equations (4.224) follow then from (4.215), (4.223) and the structural
equations (4.240), once we assume a transformation of the form

XIΓ = CIJFJ +DI
JX

J , (4.247)

where C, D satisfy CDT = DCT . We don’t need to assume that we have a fully-fledged sym-
plectic transformation to use these equations, and there are cases in the literature where the
transformation that we need in order to go from one frame to the other is slightly more general
than symplectic3. The only subtlety in this derivation is that, from (4.215) and (4.223), one finds
the first two equations of (4.224), but multiplied by matrix of Yukawa couplings, i.e. we find

Cijk(SklΓ − Skl) = −[(Cτ +D)−1C]IJCijkχ
k
Iχ

l
J , (4.248)

and similarly for Sk (multiplied by Cijk). Therefore, in order to deduce (4.224), one has to
“invert” the Yukawa coupling matrix. A similar issue is discussed in [15], section 6.3, where it is
argued that this can be done.

5 Mirror symmetry

5.1 Statement and examples

Mirror symmetry is a surprising statement. It says that, given a CY manifold X, there is
another CY manifold X̃ such that the A model on X is equivalent to the B model on X̃, and
viceversa. The underlying reason for this equivalence is the fact that both models are obtained
from the same supersymmetric sigma model by a “twisting” procedure. One consequence of this
equivalence is that the prepotentials of both theories are the same,

FA
0 (tA;X) = FB

0 (tB; X̃), (5.1)

In order for this statement to be meaningful, we need an appropriate identification between the
Kähler parameters taA appearing in the A-model prepotential (see (3.49) and the moduli that
parametrize the complex structures. This identification is called the mirror map. It turns out
that the Kähler parameters taA have to be identified with the quotient of periods in (4.82), which
we will denote taB

taB = taA. (5.2)

Notice that for mirror symmetry to make sense, one needs

h1,1(X) = h1,2(X̃). (5.3)

Mirror symmetry makes possible to compute the complicated instanton expansion of the A model
prepotential (3.49) in terms of period integrals in the B model, and it has been extensively studied
in the last fifteen years, see [8] for a detailed exposition. We will now explain this computation
and check some examples of mirror symmetry.

There are mirror symmetry constructions for many different Calabi–Yau manifolds. A good
survey can be found in [8, 23, 24]. A nice example is the quintic CY. Its mirror must have one

3For example, in the case of one-parameter CY manifolds with three singular points, a natural basis of periods
at the conifold is introduced in [22], and it is shown that the transformation going from the standard large radius
periods to that basis is not symplectic, but a generalization thereof.
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single complex structure and 101 two-classes. This uniparametric mirror family can be regarded
as a subfamily of the quintic hypersufaces in P4

4∑
i=0

x5
i − ψ

4∏
i=0

xi = 0, (5.4)

modded out by a symmetry group Z3
5 (which has fixed points) and resolving the orbifold singu-

larities (see the seminal paper [25] for details). This family has a single complex deformation
parameter, namely ψ. In the next section we will see how to compute the periods for this mirror
quintic.

The Enriques CY is an interesting example since it is self-mirror. Of course, this is consistent
with its Hodge numbers (2.40). In this way, the prepotential (4.91) can be identified with the
prepotential of the A model after identifying

ta =

∫
ηa
J , S =

∫
ηS

J , (5.5)

where ηa, a = 1, · · · , 10, ηS is a basis of two cycles corresponding respectively to the two-cycles
of the Enriques surface and the torus. Notice that there are no instanton corrections to the
prepotential in this case [26].

5.2 Computing the periods

We have now a very powerful framework to reformulate the computation of the correlation
functions in the type B model. We have reduced the problem to the problem of computing the
periods of the CY manifold. We now address how to obtain these.

The most powerful method is the use of Picard–Fuchs equations. It turns out that the periods
of the CY manifold satisfy a certain set of differential equations that can be solved in closed form.
The basis of solutions of these differential equations provide a linear basis for the periods.

Let us consider the quintic mirror (5.4). The PF equations will depend on

z = ψ−5. (5.6)

If we introduce the operator

θ = z∂z (5.7)

the PF equation reads [
θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4)

]
Π = 0 (5.8)

where Π denotes a generic period. The solutions to this differential equation can be generated
by Frobenius method, which applies to systems of differential equations of the above type with
various variables zi. One first introduces

$0(z, ρ) =
∑
n≥0

an(ρ)zn+ρ, (5.9)

where we denoted

zn+ρ =
∏
i

zni+ρi
i (5.10)
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as well as the derivative operators

Di1···in =
1

n!

∂n

∂ρi1 · · · ∂ρin

∣∣∣∣
ρ=0

. (5.11)

Then, we define

$
(1)
i (z) = Di$0(z), (5.12)

which has the structure

$
(1)
i (z) = $̃

(1)
i (z) +$0(z) log zi, (5.13)

where

$̃
(1)
i (z) =

∑
n≥0

dnz
n, dn =

dan(ρ)

dρi

∣∣∣
ρ=0

. (5.14)

The Kähler parameters of the mirror manifold are identified with the above solution,

− ti(z) =
$

(1)
i (z)

$0(z)
= log zi +

$̃
(1)
i (z)

$0(z)
. (5.15)

This is often called the mirror map, since it relates the Kähler parameters of the mirror manifold
to the complex coordinate which appears in the algebraic equations describing the family of CY
manifolds. By comparing to the definition of the flat coordinates, we have

X0(z) = $0(z), Xi(z) = −$(1)
i (z). (5.16)

Let us now define

$
(2)
i = κijkDjk$0(z), $(3) = κijkDijk$0(z) (5.17)

where κijk is the classical intersection number. The functions

$0(z), $
(1)
i (z), $

(2)
i (z), $(3)(z), (5.18)

with i = 1, · · · , h2,1(X), provide a basis for the periods (over C). We will sometimes call this the
Frobenius basis. We can also obtain the prepotential F0 of the CY manifold from the equation

∂F0

∂ti
=

1

$0(z)

{
−$(2)

i (z)− (2π)2

24

(∫
X
c2 ∧ Ji

)}
, (5.19)

or equivalently

Fi = −$(2)
i (z)− (2π)2

24

(∫
X
c2 ∧ Ji

)
. (5.20)

The third period calculates F0, up to a global factor, and we have

2F0 − 2ti∂iF0 =
1

$0(z)

{
−$(3)

i (z) +
(2π)2

24

(∫
X
c2 ∧ Ji

)
$

(1)
i (z)− ζ(3)χ

}
, (5.21)

where χ is the Euler characteristic of the CY manifold. Equivalently, we have

F0 = −$(3)
i (z) +

(2π)2

24

(∫
X
c2 ∧ Ji

)
$

(1)
i (z)− ζ(3)χ. (5.22)
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It is useful to write this in matrix form,

Π =


F0

Fj
X0

Xj

 =


−ζ(3)χ (2π)2 c

k
2

24 0 −1

−(2π)2 c
j
2

24 0 −1 0
1 0 0 0
0 −1 0 0



$0

$
(1)
k

$
(2)
k

$(3)

 , (5.23)

where we have denoted

ck2 =

∫
X
c2 ∧ Jk. (5.24)

These results were first obtained for the quintic CY in [25], and they were generalized to more
general CY manifolds in e.g. [27]. The resulting structure for the prepotential is

F0(ti) = −
κijkt

itjtk

6
− (2π)2

24

(∫
X
c2(X) ∧ Ji

)
ti − χ

2
ζ(3) + F inst

0 (ti), (5.25)

where
F inst

0 (ti) =
∑
β

N0,βQ
β (5.26)

is due to worldsheet instantons4. Note that, as compared to (3.49), the expression above contains
additional constant and linear terms in ti. These are allowed since the prepotential is defined
by its third derivative, as in (3.50). Sometimes one adds to the prepotential a further imaginary
term, quadratic in the flat coordinates ti

F0(t) = −πiσijt
itj + · · · (5.27)

In the one-modulus case one has (see e.g. [22, 27])

σ =
κ

2
mod 1. (5.28)

Let us apply this general formalism to the quintic CY. The solution for $0(z, ρ) is obtained
immediately from the PF equation. By plugging the power series ansatz, we find the recursion

(n+ ρ)an = 5(5ρ+ 5n− 4) · · · (5ρ+ 5n− 1)an−1. (5.29)

and setting the initial condition a0 = 1 we find,

an(ρ) =

∏5n
m=1(m+ 5ρ)∏n
m=1(m+ ρ)5

, (5.30)

therefore

$0(z) =
∞∑
n=0

(5n)!

(n!)5
zn. (5.31)

To compute dn, we write

an(ρ) =
Γ(5n+ 5ρ+ 1)

(
Γ(ρ+ 1)

)5

Γ(5ρ+ 1)
(

Γ(n+ ρ+ 1)
)5 (5.32)

4In comparing this convention with the one in e.g. [22], we note that t = −2πitBKSZ and FBKSZ
0 = −F0.
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therefore

dan(ρ)

dρ
= an(ρ)

[
5ψ(5n+ 5ρ+ 1) + 5ψ(ρ+ 1)− 5ψ(5ρ+ 1)− 5ψ(n+ ρ+ 1)

]
(5.33)

and

dn = 5
(5n)!

(n!)5

[
ψ(5n+ 1)− ψ(n+ 1)

]
. (5.34)

Using the standard identity

ψ(x+ n)− ψ(x) =
n−1∑
k=0

1

x+ k
, (5.35)

we can write the mirror map in the form

Q = e−t = z exp

[
5

$0(z)

∞∑
n=1

(5n)!

(n!)5

( 5n∑
j=n+1

1

j

)
zn

]
. (5.36)

The first few terms are

Q = z + 770 z2 + 1014275 z3 + 1703916750 z4 + 3286569025625 z5 + · · · , (5.37)

which can be inverted to give

z = Q− 770Q2 + 171525Q3 − 81623000Q4 − 35423171250Q5 + · · · (5.38)

We can also compute

d2an(ρ)

dρ2

∣∣∣
ρ=0

= an(0)
[
25(ψ(1 + 5n)− ψ(1 + n))2 + 25ψ′(1 + 5n)− 5ψ′(1 + n)− 20ψ′(1)

]
= an(0)

[
25
( 5n∑
j=n+1

1

j

)2
− 25

5n∑
j=1

1

j2
+ 5

n∑
j=1

1

j2

]
,

(5.39)
where we used

ψ′(n) =
π2

6
−
n−1∑
k=1

1

k2
, n > 1, ψ′(1) =

π2

6
. (5.40)

Using the value of the classical intersection number

κ = 5 (5.41)

we can also compute ∂tF0. Notice that this will be expressed in terms of z, but using the
inverse mirror map (5.38) we will be able to express it in terms of Q. Finally, we obtain for the
prepotential

F0(t) = −5

6
t3 − (2π)2 50

24
t+ 100ζ(3)

+ 2875Q+
4876875Q2

8
+

8564575000Q3

27
+

15517926796875Q4

64
+ · · ·

(5.42)

which is the famous prepotential of the quintic Calabi–Yau manifold as computed by Candelas,
Green, Parkes and de la Ossa [25]. The rational numbers appearing here are the genus zero
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Gromov–Witten invariants N0,β of the quintic. In particular, there are 2875 holomorphic spheres
of degree one in the quintic. To extract integer numbers from N0,β one has to take into account
some subtle topological effects. What happens is roughly that, given a “primitive” map of the
sphere into the quintic, in the homology class labelled by β, one can consider multicoverings of
the same map of degree d. It turns out that each multicovering contributes

1

d3
Qdβ. (5.43)

Therefore, the sum over Gromov–Witten invariants becomes∑
β

N0,βQ
β =

∑
β

n0,βLi3(Qβ). (5.44)

The numbers n0,β turn out to be integers. Formulae (5.43), (5.44) were first noted in [25], and
justified later in the context of Gromov–Witten theory by various mathematicians, see [28] for a
proof and references to previous work. The general picture of how to extract integer invariants
from Gromov–Witten invariants was put forward by Gopakumar and Vafa in [29], and for this
reason the invariants n0,β are often called Gopakumar–Vafa invariants (in this case, of genus
zero). From (5.44) and (5.42) we find that

n0,2 =
4876875

8
− 2875

8
= 609250. (5.45)

Exercise 5.1. Local P2 has one single Kähler parameter, associated to the complexified area of
P1 ⊂ P2. The PF equation describing the periods of the mirror of local P2 is[

θ3 + 3z(3θ + 2)(3θ + 1)θ
]
Π = 0. (5.46)

Notice that in this example $0(z) = 1. Compute the prepotential by using the classical intersec-
tion number κ = −1/3 (the fact that this number is fractional is related to the noncompactness
of this CY).

It is important sometimes to have an integral basis of periods, corresponding to integrals
over integral homology cycles. These can be obtained from the Frobenius basis as follows:

ΠZ =


Φ0

Φj

J0

J j

 =


ζ(3)χ
(2πi)3

ck2
24(2πi) 0 (2πi)−3

cj2
24

σjk
2πi − 1

(2πi)2
0

1 0 0 0

0 (2πi)−1δjk 0 0



$0

$
(1)
k

$
(2)
k

$(3)

 (5.47)

Note that

Φ0 = − 1

(2πi)3
F0, Φi =

1

(2πi)2
Fi −

σij
2πi

Xj , J i = − 1

2πi
Xi. (5.48)

In the literature on mirror symmetry, integral periods are often used to define the prepotential.
This convention introduces factors 2πi and is not always convenient if one wants e.g. to extract
Gromov–Witten invariants, hence our simpler choice for XI , FI .
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6 Topological strings

6.1 Coupling to gravity and holomorphic anomaly equations

What we have described so far are the topological field theories/CFTs that are behind topological
strings, but in order to obtain a string theory properly speaking we have to couple the models to
gravity. It turns out that topological strings behave in this respect like critical strings. Indeed,
what characterizes critical strings is that the 2d metric field essentially decouples, except for a
finite number of moduli. But in the topological sigma models the property (3.2) tells us that a
similar decoupling occurs. Indeed, in the BRST quantization of the critical bosonic string, one
finds a nilpotent BRST operator, QBRST, and the energy-momentum tensor turns out to be a
QBRST-commutator

T (z) = {QBRST, b(z)}. (6.1)

In addition, there is a ghost number with anomaly 3χ(Σg) = 6− 6g, in such a way that QBRST

and b(z) have ghost number 1 and −1, respectively. This structure makes possible to define the
partition function of the bosonic string at genus g, as

F bos
g =

∫
Mg

〈
6g−6∏
k=1

(b, µk)

〉
, (6.2)

where

(b, µk) =

∫
Σg

d2z(bzz(µk)
z
z̄ + bz̄z̄(µk)

z̄
z ), (6.3)

and µk are the Beltrami differentials, and can be regarded as deformations of the complex struc-
ture of the Riemann surface. The insertions of the b field are there to soak up the zero modes of
the ghost current.

The Q-exactness of (3.2) is analogue to (6.1), and the composite field Gµν plays the role
of an anti-ghost. Furthermore, the anomaly in the ghost current for the twisted sigma model
is precisely 6g − 6 for a Calabi–Yau threefold, and therefore the ghost number symmetry in
these models plays exactly the same role as the ghost number symmetry in the bosonic string.
Therefore, we can define the higher genus amplitudes or free energies of the topological string as

Fg =

∫
Mg

〈
6g−6∏
k=1

(G,µk)

〉
, g ≥ 2 (6.4)

with G instead of b. In terms of the moduli space of complex structures, Fgs have to be thought
as sections of the line bundle L2−2g. In particular, their covariant derivative reads

DaFg = ∂aFg + (2− 2g)KaFg. (6.5)

For g = 1 there is a slightly different expression [30]

F1 =
1

2

∫
d2τ

τ2
Tr
[
(−1)J0+J0J0J0q

L0 q̄L0

]
. (6.6)

Here, τ is the modular parameter of the torus, q = e2πiτ , and J0, J0 are the charges associated to
the J, J currents of the twisted superconformal theory. Of course, they can be written in terms
of FL,R following (3.100).
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The Fg defined here are computed in a topological theory which includes a general pertur-
bation like (3.112), i.e. we consider the action

S(t, t̄) = S0 +
∑̀
a=1

ta
∫

d2z φ(2)
a +

∑̀
a=1

t̄a
∫

d2z φ
(2)
a , (6.7)

where S0 is the action at a basepoint and ` = h1,1(X) (respectively, h1,2(X)) in the A (B) model.
We can now try to compute the above amplitudes by using the same kind of semiclassical

approximation that proved to be so useful in the topological sigma models. However, there is
an obstruction to do that. It turns out that the Fg are much more subtle than the topological
sigma models we started with, since there are obstructions to use the kind of arguments based
on integration by parts in moduli space that we used in (3.6) and (3.8). These obstructions are
the content of the holomorphic anomaly equations (HAE) of Bershadsky, Cecotti, Ooguri and
Vafa (BCOV) [15].

One could think that the perturbation depending on t
a

does not affect the computation of
Fg, since this is a Q-exact operator. in that case, the Fg would be holomorphic functions of the
ta. But this is not the case. If we compute

∂Fg

∂t
ā = 〈{Q, [Q0, φ

(2)
a ]}〉, (6.8)

we would we tempted to think that this is the integral of a total derivative and therefore that
it vanishes. But this is not so, since we are now integrating over the moduli space of metrics of
a two-dimensional Riemann surface Σg and this is known to have boundaries. The computation
of (6.8) can be done in detail using the techniques of CFT on Riemann surfaces, and the result
reads [15]

∂̄k̄Fg =
1

2
C
ij

k̄

(
DiDjFg−1 +

g−1∑
r=1

DiFrDjFg−r

)
. (6.9)

for g > 1 and

∂̄k̄∂mF1 =
1

2
C
ij

k̄ Cmij −
( χ

24
− 1
)
Gk̄m, (6.10)

for g = 1. In these equations, χ is the Euler number of the CY X, Cijk is the Yukawa coupling,

Di is the covariant derivative introduced in (4.38), and C
ij

k̄ is defined in (4.58).
What are the consequence of the holomorphic anomaly? First of all, as we explained in

(3.128), the dependence on t
ā

is a antiholomorphic dependence on the conjugate deformation
parameters (Kähler moduli in the A-model, complex moduli in the B-model). But, as empha-
sized by Witten [31], this means that the topological string amplitudes depend on a choice of
a background point in the moduli space of the model. This is because, even before perturbing,
when we write the action as in (3.128), the correlation functions will depend on G, which is the
antiholomorphic part of our choice of basepoint. By the same token, if we introduce an explicit
coupling constant ~ as we did in (3.8), there is no decoupling and there are corrections to the
evaluation by instantons.

There is therefore a t̄ dependence

Fg(t, t̄) (6.11)

in the topological string amplitudes, which in general cannot be computed solely by consider-
ing semiclassical configurations. There is however a choice of basepoint where indeed one can
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compute via semiclassical methods, namely when t̄ → ∞. This is because in this limit any
configuration which gives a nonzero result for the bosonic part of the first term in (3.128) is
exponentially suppressed, and by looking at (3.127) we see that in the A model, for example,
this forces maps to be holomorphic. One can indeed verify that in this limit

Fg(t) = lim
t̄→∞

Fg(t, t̄) (6.12)

can be computed as a sum over worldsheet instantons of genus g. For g = 1 we have [30]

F1(t) =
1

24

∑
a

ta
∫
X
c2(X) ∧ Ja +

∑
β

N1,βQ
β, (6.13)

while for g ≥ 2,

Fg(t) = cgχ(X) +
∑
β

Ng,β e−β·t. (6.14)

In (6.13) the first term involves the second Chern class of X, while in (6.14) the first term is the
so-called contribution of constant maps [15]. χ is the Euler characteristic of X, and cg is given
by an integral of the moduli space of Riemann surfaces, whose value can be obtained explicitly
by using string dualities [32] or by a direct calculation [33]

cg =
(−1)g−1B2gB2g−2

4g(2g − 2)(2g − 2)!
. (6.15)

In (6.13), (6.14), Ng,β are the Gromov–Witten invariants of genus g and in the class β. They
are rational numbers that “count” holomorphic maps at genus g in the class nI , and they can be
computed by integrating an appropriate function over the space of collective coordinates of the
instanton. This computation is not easy (to put it mildly). As in the case of the Gromov–Witten
invariants of genus zero, it is possible to extract from them integer Gopakumar–Vafa invariants.

The holomorphic anomaly actually makes possible to compute Fg(t, t̄) (and then its holo-
morphic limit) when combined with extra information about the geometry of the CY manifold.
In fact, in practical terms, the holomorphic anomaly is the only effective, available method to
compute Fg for general compact CY targets.

6.2 The genus one free energy

The equation (6.10) can be integrated as follows. From the special geometry equation for the
Riemann tensor (4.59) we find the Ricci tensor

Rab̄ = R c
ab̄c = Gab̄(m+ 1)− CapqC

pq

b̄ (6.16)

where m is the number of moduli. On the other hand,

Rab̄ = ∂b̄Γ
c
ac = ∂b̄

(
Gcm̄∂aGcm̄

)
. (6.17)

We now recall that the derivative of the determinant of a matrix A is given by

∂x detA = detA ·A−1 IJ∂xAIJ , (6.18)

therefore we can write
Rab̄ = ∂a∂b̄ log detG. (6.19)
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We then find,

1
2CapqC

pq

b̄ =
m+ 1

2
Gab̄ −

1

2
∂a∂b̄ log detG = ∂a∂b̄

(
−1

2
log detG+

m+ 1

2
K

)
. (6.20)

We can then integrate twice w.r.t. a and b̄ in (6.10), to obtain

F1 = −1
2 log detG+

(
m+ 1

2
− χ

24
+ 1

)
K + f1(z), (6.21)

where f1(z) is an arbitrary holomorphic function which is usually called the holomorphic ambigu-
ity. (there is also in principle an integration constant in (6.21) which is purely anti-holomorphic,
but we will not consider it here). Using the results in section 4.5, one can find the holomorphic
limit of the F1 coupling:

F1 = −1

2
log det

(
∂t

∂z

)
−
(
m+ 1

2
− χ

24
+ 1

)
log(X0(z)) + f1(z). (6.22)

The holomorphic ambiguity has to be fixed with additional data, typically coming from the
geometric meaning of F1 in (6.13). One additional piece of information one might use is that the
sum over Gromov–Witten invariants of genus one can be decomposed as

∑
β

N1,βQ
β =

∑
β

(
1

12
n0,β + n1,β

)
Li1(Qβ). (6.23)

In this formula n0,β is the Gopakumar–Vafa invariant at genus zero which we found in (5.44),
while n1,β are Gopakumar–Vafa invariants at genus one. The formula (6.23) was first proposed
in [30] and later on re-derived on physical grounds in the more general context of [29]. The
geometric meaning of this formula is the following. First, of all, given a map from a torus to
X, one can obtain additional maps by considering multicoverings. A multiple cover of degree d
contributes

1

d
Qdβ, (6.24)

and this leads to the Li1(Qβ) appearing in (6.23). In addition, maps from the sphere to X,
counted by n0,β, lead to maps from the torus by “bubbling,” i.e. by attaching an infinitesimal
handle to the sphere. This leads to the first term in the r.h.s. of (6.23).

Example 6.1. F1 for the quintic. Let us consider the quintic CY manifold. In this case, we
have a single modulus and

m+ 1

2
− χ

24
+ 1 =

31

3
. (6.25)

In this case, (6.22) reads

F1 = −31

3
log ($0(z))− 1

2
log

(
dt

dz

)
+ f1(z), (6.26)

where we parametrize the holomorphic ambiguity in terms of two constants a, b,

f1(z) = a log(z) + b log(1− 55z). (6.27)
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The coefficient a can be fixed against the large radius limit of F1 (6.13). For this manifold one
has [30] ∫

X
c2(X) ∧ J = 50, (6.28)

and the large t asymptotics is given by

F1 =
25

12
t+O(e−t). (6.29)

This fixes

a = −31

12
. (6.30)

The coefficient b can be obtained by using enumerative considerations, like e.g. the vanishing of
the Gopakumar–Vafa invariant of genus 1 and degree 1. This gives

b = − 1

12
. (6.31)

We then find

F1 =
25

12
t+

2875

12
Q+

407125

8
Q2 − 1287042500

9
Q3 +O(Q4). (6.32)

From the expression (6.23) we deduce

n1,1 = n1,2 = 0, n1,3 = 609250, (6.33)

and so on.

6.3 The higher genus free energies

The strategy is to regard (6.9), (6.10) as differential equations for Fg. Since the r.h.s. of the
equations only depends on Fg′ with g′ < g and on special geometry data, one can try to use them
in a recursion procedure to determine the amplitudes. However, the problem is that, if Fg(t, t̄)
is a solution to the equations, then

Fg(t, t̄) + fg(t), (6.34)

where fg(t) is holomorphic in t, is also a solution. This is called for obvious reasons the holo-
morphic ambiguity. However, in some circumstances this ambiguity can be fixed with physical
input. Let us illustrate the procedure with the example of the Enriques CY.

Example 6.2. The Enriques CY. To illustrate how to solve the holomorphic anomaly equations,
we will consider a particular example, namely the Enriques CY. Most of the data of special
geometry were computed in 3.4. Using these data it is elementary to compute the tensor C̄ij

k̄
,

which is a section of L−2 ⊗ Sym2(TM)⊗ T ∗M:

C̄abS̄ = C̄S̄p̄q̄G
ap̄Gbq̄e2K =

(C−1)ab

(S + S̄)2
,

C̄Sbā = C̄ād̄S̄G
bd̄GSS̄e2K = Gād(C

−1)db,

(6.35)

and it is zero otherwise.
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Let us now study the holomorphic anomaly equations, starting with g = 1. Since χ = 0, we
find

∂S∂S̄F1 =
1

2
C̄abS̄ Cab +GSS̄ =

6

(S + S̄)2
,

∂a∂ b̄F1 =
1

2
C̄Sdb̄ Cad +Gab̄ = 2Gab̄,

(6.36)

and the other derivatives vanish. The general solution to this equation is

F1(t, t̄, S, S̄) = −2 log Y − 6 log(S + S̄)− f1(t, S)− f1(t, S), (6.37)

where f1(t, S) encodes the holomorphic ambiguity. Clearly, without further physical input one
cannot make much progress. The first piece of input is the factorization

f1(t, S) = f1(t) + g(S) (6.38)

which makes possible to write the S-dependent piece of F1(t, t̄, S, S̄) as

− 6 log
(

(S + S̄)|g2(S)|2
)
. (6.39)

Now, S is the Kähler parameter of the torus in K3×T2, and there is an action of SL(2,Z) on
it. It is natural to assume that the topological string amplitudes Fg are modular forms of a
given weight with respect to this modular group. Due to the logarithm, F1 should be modular
invariant. As we will see in a moment, it follows from the holomorphic anomaly equation that Fg
has modular weight 2−2g. This fixes f(S) to be of modular weight 1, and absence of singularities
for S 6=∞ fixes

g(S) = η2(S), qS = e−S , (6.40)

where η(S) is the Dedekind eta function. This argument was already used in [30] to compute
F1 for an elliptic curve. The other piece of the ambiguity f1(t) is still not fixed, but can be
obtained by using for example heterotic/type II duality [34] or a generalization of the modularity
argument [35].

Let us now write the holomorphic anomaly equations for higher genus in this model:

∂S̄Fg =
1

2

(C−1)ab

(S + S̄)2

(
DaDbFg−1 +

g−1∑
r=1

DaFrDbFg−r

)
,

∂āFg = (C−1)dbGād

(
DSDbFg−1 +

g−1∑
r=1

DSFrDbFg−r

)
,

(6.41)

For g = 2, the covariant derivatives acting on F1 are ordinary derivatives. Notice that

∂SF1 =
1

2
Ê2(S, S̄), (6.42)

where

Ê2(S, S̄) = E2(S)− 12

S + S̄
(6.43)

is the covariant Eisenstein series, which is a nonholomorphic modular form of weight 2. This
confirms that the modular weight of F2 with respect to SL(2,Z) is 2. The ring of almost holo-
morphic modular forms is generated by Ê2, E4 and E6, therefore we should expect F2 to be given
by

F2(t, t̄, S, S̄) = Ê2(S, S̄)c(t, t̄). (6.44)
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We can now plug this ansatz in the first equation of (6.41) and we obtain

c(t, t̄) =
1

24
(C−1)ab

(
DaDbF

E
1 +DaF

E
1 DbF

E
1

)
, (6.45)

where we have denoted

FE1 (t, t̄) = −2 log Y + f1(t) + f1(t̄). (6.46)

Therefore, if we know f1(t) (the holomorphic ambiguity for genus one) we can obtain the exact
value of F2. This procedure can be extended to obtain nontrivial results for Fg at low genus, see
[20] for more details.

For a general CY we don’t have the special structures of the Enriques CY example. One can
however find a systematic method to solve the HAEs by introducing the propagators of section
4.6. It is easy to see that the Fgs can be written as polynomials in the propagators and the
derivatives Ka, and we can regard these propagators and Ka as generators of a polynomial ring
in which the Fgs take values. In particular, the non-holomorphic dependence of Fg is contained
in these generators. Then, the HAE can be thought as recursive equations determining the
polynomial structure of the Fgs in these generators [20, 21, 36]. We will follow in particular the
formulation in [21]. To write the equations in that form, we use generic complex parameters
za, z̄ā, and we translate the anti-holomorphic dependence of Fg in its dependence w.r.t. the
generators. One obtains in this way,

∂̄āFg =
∂Fg
∂Scd

C
cd
ā +

∂Fg
∂Kc

Gcā +
∂Fg
∂Sb

GeāS
eb +

∂Fg
∂S

GbāS
b

=
∂Fg
∂Scd

C
cd
ā +Gāb

(
∂Fg
∂Kb

+
∂Fg
∂Sc

Scb +
∂Fg
∂S

Sb
)
.

(6.47)

By comparing this expression to (6.9), we find the two equations

∂Fg
∂Sab

=
1

2
DaDbFg−1 +

1

2

∑
g1+g2=g

DaFg1DbFg2 ,

0 =
∂Fg
∂Ka

+ Sa
∂Fg
∂S

+ Sab
∂Fg
∂Sb

.

(6.48)

It turns out convenient to use the tilded generators (4.231). Then, the second equation in (6.48)
becomes simply

∂Fg
∂Ka

= 0, (6.49)

while the first equation reads

∂Fg
∂Sab

− 1

2

∂Fg

∂S̃a
Kb −

1

2

∂Fg

∂S̃b
Ka +

1

2

∂Fg

∂S̃
KaKb =

1

2
DaDbFg−1 +

1

2

∑
g1+g2=g

DaFg1DbFg2 . (6.50)

We want to write down this equation explicitly. To do this, we note that the double covariant
derivative as

DiDjFg−1 =
(
∂iδ

k
j − Γkij + (4− 2g)Ki

)
(∂k + (4− 2g)Kk)Fg−1. (6.51)
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The key idea the expression for the Christoffel symbol in terms of the propagators (4.156), as
well as the last equation in (4.240). We also have to take into account that F1 is slightly different
from the higher Fgs, and it satisfies

DiF1 = Ci −
( χ

24
− 1
)
Ki, Ci =

1

2
CijkS

jk + fi(z). (6.52)

We can think about F1 as having the derivative

∂′iFi = Ci, (6.53)

and U(1) charge −χ/24 + 1. We now take into account that, if g > 2, we have

DiDjFg−1 =
(
∂j∂k + (CjkmS

ml − sljk)∂l + (4− 2g)(hjk − CjklS̃l)

+ (3− 2g)Kj ∂k + (3− 2g)Kk ∂j + (4− 2g)(3− 2g)KkKj

)
Fg−1,

(6.54)

where we used (4.156) and the last equation in (4.240). If g = 2, we have

DjDkF1 = ∂jCk + (CjkmS
ml − sljk)Cl −

( χ
24
− 1
)

(hjk − CjklS̃l)

+ (3− 2g)KjCk + (3− 2g)KkCj −
( χ

24
− 1
)

(3− 2g)KkKj .
(6.55)

We can unify both equations if we define, as in [13],

∂′kFg =

{
∂kFg, if g ≥ 2,

Ck, if g = 1,
(6.56)

and5

cg =

{
(2− 2g)Fg, if g ≥ 2,

−
( χ

24 − 1
)
, if g = 1.

(6.57)

Then, we can write

DjDkFg−1 =
(
∂j∂
′
k + (CjkmS

ml − sljk)∂′l + (3− 2g)Kj ∂
′
k + (3− 2g)Kk ∂

′
j

)
Fg−1

+
(
hjk − CjklS̃l +KkKj

)
cg−1.

(6.58)

By using the same notation, we find

g−1∑
h=1

DjFg−hDkFh =

g−1∑
h=1

{
∂′jFg−h∂

′
kFh +Kkch∂

′
jFg−h +Kjcg−h∂

′
kFh +KjKkchcg−h

}
. (6.59)

With these ingredients, we can write down the explicit expression for (6.50). Since Fg is inde-
pendent of Ki due to (6.49), we can equate both sides of the equation according to the powers

5Note that we define cg with the opposite sign to the one defined in [13].
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of Kj . We then obtain the following set of three equations:

∂Fg

∂S̃j
= −(3− 2g)∂′jFg−1 −

g−1∑
h=1

ch∂
′
jFg−h,

∂Fg

∂S̃
= (3− 2g)cg−1 +

g−1∑
h=1

chcg−h,

∂Fg
∂Sjk

=
1

2

(
∂j∂
′
k + (CjkmS

ml − sljk)∂′l
)
Fg−1 +

1

2
(hjk − CjklSl)cg−1

+
1

2

g−1∑
h=1

∂′jFg−h∂
′
kFh.

(6.60)

Example 6.3. F1 redux. Let us now use the formalism of propagators to rederive the expression
(6.21). By using the very definition of the propagator (4.152) and of the Kähler potential (4.21),
we can integrate (6.10) a first time to obtain

∂iF1 =
1

2
SklCkli −

( χ
24
− 1
)
Ki + f

(1)
i . (6.61)

Now, one uses (4.156) to write

SklCkli = −Γlil + (m+ 1)Ki + slil, (6.62)

where m is the number of moduli. Let us now consider the holomorphic limit. By using (4.146),
we find

Γlil =
∂2ta

∂zi∂zl
∂zl

∂ta
=

∂

∂zi

{
Tr log

(
∂ta

∂zk

)}
=

∂

∂zi

{
log det

(
∂ta

∂zk

)}
. (6.63)

We can then integrate (6.61) as

F1 =

(
m+ 1

2
− χ

24
+ 1

)
K − 1

2

{
log det

(
∂ta

∂zk

)}
+ f1(z), (6.64)

where f1(z) is such that

∂if1(z) = f
(1)
i (z) +

1

2
slil. (6.65)

Example 6.4. F2 for an arbitrary one-modulus CY. In the one-modulus case there are four
generators, namely Szz, S̃z, S̃ and Kz. We will denote the holomorphic three-point function by
Cz. The relevant derivatives are

∂zS
zz = Cz (Szz)2 + 2S̃z − 2szzzS

zz + hzzz ,

∂zKz = K2
z − CzS̃z − SzzCzKz + szzzKz + hzz.

(6.66)

The starting point of the recursion is (6.61), which in the one modulus case reads

DzF1 =
1

2
CzS

zz +
(

1− χ

24

)
Kz + f (1)

z . (6.67)
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In this case, the r.h.s. of (6.50) reads

∂F2

∂Szz
− ∂F2

∂S̃z
Kz +

1

2

∂F2

∂S̃
K2
z =

5

8
C2
z (Szz)2 +

1

4

(
C ′z − 3Czs

z
zz + 4Czf

(1)
z

)
Szz

+
1

4
hzzz Cz +

1

2
∂zf

(1)
z +

1

2
f (1)
z

(
f (1)
z − szzz

)
+

1

2

(
1− χ

24

)
hzz

+
χ

48
CzS̃

z +
χ

48

( χ
24
− 1
)
K2
z −

χ

48

(
CzS

zz + 2f (1)
z

)
Kz

(6.68)

By using that F2 is independent of Kz, this can be integrated to obtain

F2 =
5

24
C2
z (Szz)3 +

1

8

(
C ′z − 3Czs

z
zz + 4Czf

(1)
z

)
(Szz)2

+

(
1

4
hzzz Cz +

1

2
∂zf

(1)
z +

1

2
f (1)
z

(
f (1)
z − szzz

)
+

1

2

(
1− χ

24

)
hzz

)
Szz

+
χ

48

(
CzS

zz + 2f (1)
z

)
S̃z +

χ

24

( χ
24
− 1
)
S̃ + f (2).

(6.69)
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